ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكة نقل المعرفة متعددة المعرفة لتحليل المعنويات المستندة إلى جانب الجانب

An Iterative Multi-Knowledge Transfer Network for Aspect-Based Sentiment Analysis

293   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

ينطوي تحليل المعنويات المستندة إلى جانب الجسیلاء بشكل أساسي على ثلاث مجموعات فرعية: استخراج الأجل في الجانب، واستخراج الأجل رأي، وتصنيف المعنويات على مستوى الجانب، والذي يتم التعامل معه عادة بطريقة منفصلة أو مشتركة. ومع ذلك، فإن النهج السابقة لا تستغل العلاقات التفاعلية بين ثلاث مجموعات فرعية ولا تستفيد بشكل متفيد على مستوى الوثيقة / المعروفة المسمى المسمى المستندات المتوفرة بسهولة، مما يقيد أدائه. لمعالجة هذه المشكلات، نقترح شبكة نقل المعرفة متعددة المعرفة متعددة الرواية (IMKTN) ل AND-LITE ABSA. لشيء واحد، من خلال الارتباطات التفاعلية بين المهن الفرعية ABASA، تقوم IMKTN بتحويل المعرفة الخاصة بمهام المهام من أي اثنين من المهام الفرعية الثلاثة إلى واحدة أخرى على مستوى الرمز المميز من خلال الاستفادة من خوارزمية التوجيه المصممة جيدا، أي أي اثنين من سيساعد المهن الفرعية الثلاثة الثالث. بالنسبة لآخر، تقوم IMKTN بتحويل المعرفة على مستوى المستند، I.E.، المعرفة ذات الصلة بالمجال والمعنويات، إلى التسكال الفرعية على مستوى الجانب لتعزيز الأداء المقابل. النتائج التجريبية على ثلاثة مجموعات بيانات معيار توضح فعالية وتفوق نهجنا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يتنبأ تحليل المعنويات المستندة إلى جانب الجسيم (ABASA) بقبولية المعنويات نحو مصطلح معين معين في جملة، وهي مهمة مهمة في تطبيقات العالم الحقيقي. لأداء ABSA، يلزم النموذج المدرب أن يكون له فهم جيد للمعلومات السياقية، وخاصة الأنماط الخاصة التي تشير إلى ق طبية المعنويات. ومع ذلك، تختلف هذه الأنماط عادة في جمل مختلفة، خاصة عندما تأتي الجمل من مصادر مختلفة (المجالات)، مما يجعل ABSA لا يزال صعبا للغاية. على الرغم من الجمع بين البيانات المسمى عبر مصادر مختلفة (المجالات) هو حل واعد لمعالجة التحدي، في التطبيقات العملية، عادة ما يتم تخزين هذه البيانات المسمى في مواقع مختلفة وقد لا يمكن الوصول إليها لبعضها البعض بسبب الخصوصية أو المخاوف القانونية (مثل البيانات مملوكة لشركات مختلفة). لمعالجة هذه المشكلة واستخدم أفضل استخدام لجميع البيانات المسمى، نقترح نموذج ABSA الجديد مع التعلم الفيدرالي (FL) المعتمد للتغلب على قيود عزل البيانات وإدماج ذاكرة الموضوع (TM) المقترح اتخاذ حالات البيانات من مصادر متنوعة (المجالات) في الاعتبار. خاصة، تهدف TM إلى تحديد مصادر البيانات المختلفة المعزولة بسبب عدم إمكانية الوصول إلى البيانات من خلال توفير معلومات فئة مفيدة للتنبؤات المحلية. توضح النتائج التجريبية على بيئة محاكاة لثلاثة عقد مع ثلاث عقود فعالية نهجنا، حيث تتفوق TM-FL على خطوط أساس مختلفة بما في ذلك بعض أطر FL مصممة جيدا.
كل من قضايا أوجه القصور في البيانات والاتساق الدلالي مهم لتعزيز البيانات.معظم الطرق السابقة تعالج القضية الأولى، ولكن تجاهل المرحلة الثانية.في حالات تحليل المعنويات المستندة إلى جانب الجسيم، قد يغير انتهاك القضايا المذكورة أعلاه قطبية الجانب والمشاعر .في هذه الورقة، نقترح نهج تكبير بيانات الحفاظ على دلالات - من خلال النظر في أهمية كل كلمة في تسلسل نصي وفقا للجوانب والمشاعر ذات الصلة.ثم نحل محل الرموز غير المهتمات مع استراتيجيتين استبدال دون تغيير قطبية مستوى الجانب.يتم تقييم نهجنا على العديد من مجموعات بيانات تحليل المعنويات المتاحة للجمهور وسيناريوهات التنبؤ في مجال الأسهم / المخاطر في العالم الحقيقي.تظهر النتائج التجريبية أن منهجيةنا تحقق أداء أفضل في جميع مجموعات البيانات.
يركز تحليل المعنويات المستندة إلى جانب جوانب (ABASA) عادة على استخراج الجوانب والتنبؤ بمشاعرهم على جمل فردية مثل مراجعات العملاء. في الآونة الأخيرة، تلقت منصة أخرى من برنامج تقاسم الرأي، وهي منتدى الإجابة على السؤال (QA)، شعبية متزايدة، التي تتراكم ع دد كبير من آراء المستخدم تجاه الجوانب المختلفة. هذا يحفزنا على التحقيق في مهمة ABASA على منتديات ضمان الجودة (ABASA-QA)، تهدف إلى الكشف بشكل مشترك بين الجوانب التي تمت مناقشتها وأسطابات المشاعر الخاصة بهم لفترة من ضمان الجودة. على عكس جمل المراجعة، يتكون زوج ضمان الجودة من جملتين موازيتين، مما يتطلب نمذجة التفاعل لمحاذاة الجانب المذكور في السؤال وأدائن الرأي المرتبط في الإجابة. تحقيقا لهذه الغاية، نقترح نموذجا بتصميم محدد للنمذجة المتعلقة بالتفاعل عن الجوانب عبر الجملة لمعالجة هذه المهمة. يتم تقييم الطريقة المقترحة على ثلاثة مجموعات بيانات حقيقية، وتظهرت النتائج أن نموذجنا يفوق على العديد من خطوط الأساس القوية المعتمدة من النماذج الحكومية ذات الصلة.
عندما نهم مهتمين في مجال معين، يمكننا جمع وتحليل البيانات من الإنترنت.لا يتم تصميم البيانات التي تم جمعها حديثا، لذلك من المأمول استخدام البيانات المسمى مفيدة للبيانات الجديدة.نقوم بإجراء التعرف على كيان الاسم (NER) وتحليل المعرفات المستندة إلى جانب الجسيم (ABASA) في التعلم متعدد المهام، والجمع بين شبكة توليد المعلمة والهندسة المعمارية Dann لبناء النموذج.في مهمة NER، يتم تصنيف البيانات مع التعادل والكسر، ويتم ضبط وزن المهمة وفقا لمعدل تغيير الخسارة في كل مهمة باستخدام متوسط الوزن الديناميكي (DWA).استخدمت هذه الدراسة مجموعات بيانات مجال مصدر مختلفة.تظهر النتائج التجريبية أن التعادل، استراحة يمكن أن تحسن نتائج النموذج؛يمكن أن يكون DWA أداء أفضل في النتائج؛يمكن استخدام مزيج شبكة توليد المعلمة وطبقة انعكاس التدرج لكل تعلم جيد في مجال مختلف.
تحظى بشعبية تطبيق النماذج العصبية القائمة على الرسم البياني في دراسات تحليل المعفاة القائمة على الجانب القائم على الجانب (ABSA) لاستخدام علاقات الكلمة من خلال يوزع التبعية لتسهيل المهمة مع التوجيه الدلالي الأفضل لتحليل السياق والكلمات. ومع ذلك، فإن م عظم هذه الدراسات فقط الاستفادة من علاقات التبعية فقط دون النظر لأنواع التبعية، وهي محدودة في عدم وجود آليات فعالة لتمييز العلاقات المهمة وكذلك التعلم من طبقات مختلفة من النماذج القائمة على الرسم البياني. لمعالجة هذه القيود، في هذه الورقة، نقترح نهجا للاستفادة بشكل صريح لأنواع التبعية من أجل ABSA مع الشبكات التنافسية الرسمية من النوع الواجب (T-GCN)، حيث يتم استخدام الاهتمام في T-GCN لتمييز حواف مختلفة (العلاقات) في يقترح الرسم البياني والطبقة اليقظة أن يتعلم بشكل شامل من طبقات مختلفة من T-GCN. يتم إثبات صلاحية وفعالية نهجنا في النتائج التجريبية، حيث يتم تحقيق الأداء الحديثة في مجموعات بيانات قياسية باللغة الإنجليزية. تتم إجراء مزيد من التجارب لتحليل مساهمات كل مكون في نهجنا وتوضيح كيفية مساعدة الطبقات المختلفة في T-GCN ABSA مع التحليل الكمي والنوعي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا