ترغب بنشر مسار تعليمي؟ اضغط هنا

تحليل المعنويات المستندة إلى الجانب في المنتديات

Aspect-based Sentiment Analysis in Question Answering Forums

425   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يركز تحليل المعنويات المستندة إلى جانب جوانب (ABASA) عادة على استخراج الجوانب والتنبؤ بمشاعرهم على جمل فردية مثل مراجعات العملاء. في الآونة الأخيرة، تلقت منصة أخرى من برنامج تقاسم الرأي، وهي منتدى الإجابة على السؤال (QA)، شعبية متزايدة، التي تتراكم عدد كبير من آراء المستخدم تجاه الجوانب المختلفة. هذا يحفزنا على التحقيق في مهمة ABASA على منتديات ضمان الجودة (ABASA-QA)، تهدف إلى الكشف بشكل مشترك بين الجوانب التي تمت مناقشتها وأسطابات المشاعر الخاصة بهم لفترة من ضمان الجودة. على عكس جمل المراجعة، يتكون زوج ضمان الجودة من جملتين موازيتين، مما يتطلب نمذجة التفاعل لمحاذاة الجانب المذكور في السؤال وأدائن الرأي المرتبط في الإجابة. تحقيقا لهذه الغاية، نقترح نموذجا بتصميم محدد للنمذجة المتعلقة بالتفاعل عن الجوانب عبر الجملة لمعالجة هذه المهمة. يتم تقييم الطريقة المقترحة على ثلاثة مجموعات بيانات حقيقية، وتظهرت النتائج أن نموذجنا يفوق على العديد من خطوط الأساس القوية المعتمدة من النماذج الحكومية ذات الصلة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تتمثل المحور الخاص بتحليل المعنويات المستندة إلى جانب الجانب (ABAMA) على إزاحة شروط الجانب مع شروط الرأي المقابلة، والتي قد تستمد تنبؤات المعنويات أسهل. في هذه الورقة، نحقق في مهمة ABSA الموحدة من منظور فهم القراءة بالآلة (MRC) من خلال مراعاة أن الجا نب وشروط الرأي يمكن أن يكون بمثابة الاستعلام والإجابة في MRC Interchangeably. نقترح نماذج جديدة تسمى دور يقرأ آلة القراءة (RF-MRC) لحلها. في قلبها، تعتبر النتائج المتوقعة إما استخراج الأوجه (أكلت) أو مصطلحات الرأي (OTE) الاستعلامات، على التوالي، وتعتبر الرأي المتطابق أو شروط الجانب إجابات. يمكن انقلاب الاستفسارات والإجابات للكشف المتعدد القفز. أخيرا، يتم توقع كل زوج من جانب الرأي المتطابق مع مصنف المعنويات. RF-MRC يمكن أن يحل مهمة ABSA دون أي شرح بيانات إضافي أو تحويل. تجارب على ثلاثة معايير مستعملة على نطاق واسع ومجموعة بيانات صعبة توضح تفوق الإطار المقترح.
كل من قضايا أوجه القصور في البيانات والاتساق الدلالي مهم لتعزيز البيانات.معظم الطرق السابقة تعالج القضية الأولى، ولكن تجاهل المرحلة الثانية.في حالات تحليل المعنويات المستندة إلى جانب الجسيم، قد يغير انتهاك القضايا المذكورة أعلاه قطبية الجانب والمشاعر .في هذه الورقة، نقترح نهج تكبير بيانات الحفاظ على دلالات - من خلال النظر في أهمية كل كلمة في تسلسل نصي وفقا للجوانب والمشاعر ذات الصلة.ثم نحل محل الرموز غير المهتمات مع استراتيجيتين استبدال دون تغيير قطبية مستوى الجانب.يتم تقييم نهجنا على العديد من مجموعات بيانات تحليل المعنويات المتاحة للجمهور وسيناريوهات التنبؤ في مجال الأسهم / المخاطر في العالم الحقيقي.تظهر النتائج التجريبية أن منهجيةنا تحقق أداء أفضل في جميع مجموعات البيانات.
ينطوي تحليل المعنويات المستندة إلى جانب الجسیلاء بشكل أساسي على ثلاث مجموعات فرعية: استخراج الأجل في الجانب، واستخراج الأجل رأي، وتصنيف المعنويات على مستوى الجانب، والذي يتم التعامل معه عادة بطريقة منفصلة أو مشتركة. ومع ذلك، فإن النهج السابقة لا تستغ ل العلاقات التفاعلية بين ثلاث مجموعات فرعية ولا تستفيد بشكل متفيد على مستوى الوثيقة / المعروفة المسمى المسمى المستندات المتوفرة بسهولة، مما يقيد أدائه. لمعالجة هذه المشكلات، نقترح شبكة نقل المعرفة متعددة المعرفة متعددة الرواية (IMKTN) ل AND-LITE ABSA. لشيء واحد، من خلال الارتباطات التفاعلية بين المهن الفرعية ABASA، تقوم IMKTN بتحويل المعرفة الخاصة بمهام المهام من أي اثنين من المهام الفرعية الثلاثة إلى واحدة أخرى على مستوى الرمز المميز من خلال الاستفادة من خوارزمية التوجيه المصممة جيدا، أي أي اثنين من سيساعد المهن الفرعية الثلاثة الثالث. بالنسبة لآخر، تقوم IMKTN بتحويل المعرفة على مستوى المستند، I.E.، المعرفة ذات الصلة بالمجال والمعنويات، إلى التسكال الفرعية على مستوى الجانب لتعزيز الأداء المقابل. النتائج التجريبية على ثلاثة مجموعات بيانات معيار توضح فعالية وتفوق نهجنا.
يعمل العمل الحديث على تصنيف المعنويات على مستوى جانب الجساب شبكات اتصالا بيانيا (GCN) على أشجار التبعية لتعلم التفاعلات بين شروط الارتفاع وكلمات الرأي. في بعض الحالات، لا يمكن الوصول إلى كلمات الرأي المقابلة لمصطلح الجانب داخل القفزتين على أشجار التب عية، والتي تتطلب المزيد من طبقات GCN إلى النموذج. ومع ذلك، غالبا ما تحقق GCNS أفضل أداء بطبقتين، ولا تحقق GCNs أعمق أي مكسب إضافي. لذلك، نقوم بتصميم نماذج GCN الانتباه الانتقائية الجديدة. من ناحية، يتيح النموذج المقترح التفاعل المباشر بين شروط الجانب وكلمات السياق عن طريق عملية الانتباه الذاتي دون تحديد المسافة على أشجار التبعية. من ناحية أخرى، تم تصميم إجراء اختيار Top-K لتحديد كلمات الرأي عن طريق تحديد كلمات سياق K مع أعلى درجات الاهتمام. نقوم بإجراء تجارب على عدة مجموعات بيانات معيار شائعة الاستخدام وتظهرت النتائج أن SA-GL-GCN المقترح تفوق نماذج أساسية قوية.
تحظى بشعبية تطبيق النماذج العصبية القائمة على الرسم البياني في دراسات تحليل المعفاة القائمة على الجانب القائم على الجانب (ABSA) لاستخدام علاقات الكلمة من خلال يوزع التبعية لتسهيل المهمة مع التوجيه الدلالي الأفضل لتحليل السياق والكلمات. ومع ذلك، فإن م عظم هذه الدراسات فقط الاستفادة من علاقات التبعية فقط دون النظر لأنواع التبعية، وهي محدودة في عدم وجود آليات فعالة لتمييز العلاقات المهمة وكذلك التعلم من طبقات مختلفة من النماذج القائمة على الرسم البياني. لمعالجة هذه القيود، في هذه الورقة، نقترح نهجا للاستفادة بشكل صريح لأنواع التبعية من أجل ABSA مع الشبكات التنافسية الرسمية من النوع الواجب (T-GCN)، حيث يتم استخدام الاهتمام في T-GCN لتمييز حواف مختلفة (العلاقات) في يقترح الرسم البياني والطبقة اليقظة أن يتعلم بشكل شامل من طبقات مختلفة من T-GCN. يتم إثبات صلاحية وفعالية نهجنا في النتائج التجريبية، حيث يتم تحقيق الأداء الحديثة في مجموعات بيانات قياسية باللغة الإنجليزية. تتم إجراء مزيد من التجارب لتحليل مساهمات كل مكون في نهجنا وتوضيح كيفية مساعدة الطبقات المختلفة في T-GCN ABSA مع التحليل الكمي والنوعي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا