ترغب بنشر مسار تعليمي؟ اضغط هنا

تحليل المعففات المستندة إلى جانب الجسيم والاعتراف كيان اسم المغني باستخدام التعلم بناء على شبكة توليد المعلمة

Aspect-Based Sentiment Analysis and Singer Name Entity Recognition using Parameter Generation Network Based Transfer Learning

247   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

عندما نهم مهتمين في مجال معين، يمكننا جمع وتحليل البيانات من الإنترنت.لا يتم تصميم البيانات التي تم جمعها حديثا، لذلك من المأمول استخدام البيانات المسمى مفيدة للبيانات الجديدة.نقوم بإجراء التعرف على كيان الاسم (NER) وتحليل المعرفات المستندة إلى جانب الجسيم (ABASA) في التعلم متعدد المهام، والجمع بين شبكة توليد المعلمة والهندسة المعمارية Dann لبناء النموذج.في مهمة NER، يتم تصنيف البيانات مع التعادل والكسر، ويتم ضبط وزن المهمة وفقا لمعدل تغيير الخسارة في كل مهمة باستخدام متوسط الوزن الديناميكي (DWA).استخدمت هذه الدراسة مجموعات بيانات مجال مصدر مختلفة.تظهر النتائج التجريبية أن التعادل، استراحة يمكن أن تحسن نتائج النموذج؛يمكن أن يكون DWA أداء أفضل في النتائج؛يمكن استخدام مزيج شبكة توليد المعلمة وطبقة انعكاس التدرج لكل تعلم جيد في مجال مختلف.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

ينطوي تحليل المعنويات المستندة إلى جانب الجسیلاء بشكل أساسي على ثلاث مجموعات فرعية: استخراج الأجل في الجانب، واستخراج الأجل رأي، وتصنيف المعنويات على مستوى الجانب، والذي يتم التعامل معه عادة بطريقة منفصلة أو مشتركة. ومع ذلك، فإن النهج السابقة لا تستغ ل العلاقات التفاعلية بين ثلاث مجموعات فرعية ولا تستفيد بشكل متفيد على مستوى الوثيقة / المعروفة المسمى المسمى المستندات المتوفرة بسهولة، مما يقيد أدائه. لمعالجة هذه المشكلات، نقترح شبكة نقل المعرفة متعددة المعرفة متعددة الرواية (IMKTN) ل AND-LITE ABSA. لشيء واحد، من خلال الارتباطات التفاعلية بين المهن الفرعية ABASA، تقوم IMKTN بتحويل المعرفة الخاصة بمهام المهام من أي اثنين من المهام الفرعية الثلاثة إلى واحدة أخرى على مستوى الرمز المميز من خلال الاستفادة من خوارزمية التوجيه المصممة جيدا، أي أي اثنين من سيساعد المهن الفرعية الثلاثة الثالث. بالنسبة لآخر، تقوم IMKTN بتحويل المعرفة على مستوى المستند، I.E.، المعرفة ذات الصلة بالمجال والمعنويات، إلى التسكال الفرعية على مستوى الجانب لتعزيز الأداء المقابل. النتائج التجريبية على ثلاثة مجموعات بيانات معيار توضح فعالية وتفوق نهجنا.
يهدف تحليل المعنويات إلى اكتشاف المشاعر الإجمالية، أي قطبية أو قطبية جملة أو فقرة أو نصية، دون النظر في الكيانات المذكورة وجوانبها. يهدف تحليل المعنويات القائم على الجانب إلى استخراج جوانب الكيانات المستهدفة المعينة مشاعرهم. يعمل بشكل مسبق على صياغة هذه المشكلة بمثابة مشكلة في العلامات أو حل هذه المهمة باستخدام إطار المستخلص المستخرج ثم يستند إلى الفحص حيث يتم استخراج كل أهداف الرأي الأولى من الجملة، ثم بمساعدة تمثيل تمثيل، يتم تصنيف الأهداف على أنها إيجابية، سلبية، أو محايدة. تعاني مشكلة وضع العلامات على التسلسل من مشكلات مثل عدم تناسق المعنويات ومساحة البحث الهائل. في حين أن إطار المستخلصات المستخلصات القائم على الفستان يعاني من قضايا مثل تغطية نصف كلمة وإيواء متداخلة. للتغلب على هذا، نقترح إطار عمل مستخلص مستخلص مقرا له على أساسه مع رواية ومثبتة محسنة. تجارب في مجموعات البيانات القياسية الثلاثة (Restaurant14، Laptop14، Restaurant15) تظهر نموذجنا يتفوق باستمرار على الحالة الحالية من بين الفن. علاوة على ذلك، نقدم أيضا مراجعات أفلام مختلفة للإشراف على مجموعة بيانات (Movie20) ومراجعات فيلم Pseudo-Latceed DataSet (Movieslarge) صراحة لهذه المهمة والإبلاغ عن النتائج على مجموعة بيانات Movie20 الجديدة أيضا.
يتنبأ تحليل المعنويات المستندة إلى جانب الجسيم (ABASA) بقبولية المعنويات نحو مصطلح معين معين في جملة، وهي مهمة مهمة في تطبيقات العالم الحقيقي. لأداء ABSA، يلزم النموذج المدرب أن يكون له فهم جيد للمعلومات السياقية، وخاصة الأنماط الخاصة التي تشير إلى ق طبية المعنويات. ومع ذلك، تختلف هذه الأنماط عادة في جمل مختلفة، خاصة عندما تأتي الجمل من مصادر مختلفة (المجالات)، مما يجعل ABSA لا يزال صعبا للغاية. على الرغم من الجمع بين البيانات المسمى عبر مصادر مختلفة (المجالات) هو حل واعد لمعالجة التحدي، في التطبيقات العملية، عادة ما يتم تخزين هذه البيانات المسمى في مواقع مختلفة وقد لا يمكن الوصول إليها لبعضها البعض بسبب الخصوصية أو المخاوف القانونية (مثل البيانات مملوكة لشركات مختلفة). لمعالجة هذه المشكلة واستخدم أفضل استخدام لجميع البيانات المسمى، نقترح نموذج ABSA الجديد مع التعلم الفيدرالي (FL) المعتمد للتغلب على قيود عزل البيانات وإدماج ذاكرة الموضوع (TM) المقترح اتخاذ حالات البيانات من مصادر متنوعة (المجالات) في الاعتبار. خاصة، تهدف TM إلى تحديد مصادر البيانات المختلفة المعزولة بسبب عدم إمكانية الوصول إلى البيانات من خلال توفير معلومات فئة مفيدة للتنبؤات المحلية. توضح النتائج التجريبية على بيئة محاكاة لثلاثة عقد مع ثلاث عقود فعالية نهجنا، حيث تتفوق TM-FL على خطوط أساس مختلفة بما في ذلك بعض أطر FL مصممة جيدا.
تتمثل المحور الخاص بتحليل المعنويات المستندة إلى جانب الجانب (ABAMA) على إزاحة شروط الجانب مع شروط الرأي المقابلة، والتي قد تستمد تنبؤات المعنويات أسهل. في هذه الورقة، نحقق في مهمة ABSA الموحدة من منظور فهم القراءة بالآلة (MRC) من خلال مراعاة أن الجا نب وشروط الرأي يمكن أن يكون بمثابة الاستعلام والإجابة في MRC Interchangeably. نقترح نماذج جديدة تسمى دور يقرأ آلة القراءة (RF-MRC) لحلها. في قلبها، تعتبر النتائج المتوقعة إما استخراج الأوجه (أكلت) أو مصطلحات الرأي (OTE) الاستعلامات، على التوالي، وتعتبر الرأي المتطابق أو شروط الجانب إجابات. يمكن انقلاب الاستفسارات والإجابات للكشف المتعدد القفز. أخيرا، يتم توقع كل زوج من جانب الرأي المتطابق مع مصنف المعنويات. RF-MRC يمكن أن يحل مهمة ABSA دون أي شرح بيانات إضافي أو تحويل. تجارب على ثلاثة معايير مستعملة على نطاق واسع ومجموعة بيانات صعبة توضح تفوق الإطار المقترح.
تحظى بشعبية تطبيق النماذج العصبية القائمة على الرسم البياني في دراسات تحليل المعفاة القائمة على الجانب القائم على الجانب (ABSA) لاستخدام علاقات الكلمة من خلال يوزع التبعية لتسهيل المهمة مع التوجيه الدلالي الأفضل لتحليل السياق والكلمات. ومع ذلك، فإن م عظم هذه الدراسات فقط الاستفادة من علاقات التبعية فقط دون النظر لأنواع التبعية، وهي محدودة في عدم وجود آليات فعالة لتمييز العلاقات المهمة وكذلك التعلم من طبقات مختلفة من النماذج القائمة على الرسم البياني. لمعالجة هذه القيود، في هذه الورقة، نقترح نهجا للاستفادة بشكل صريح لأنواع التبعية من أجل ABSA مع الشبكات التنافسية الرسمية من النوع الواجب (T-GCN)، حيث يتم استخدام الاهتمام في T-GCN لتمييز حواف مختلفة (العلاقات) في يقترح الرسم البياني والطبقة اليقظة أن يتعلم بشكل شامل من طبقات مختلفة من T-GCN. يتم إثبات صلاحية وفعالية نهجنا في النتائج التجريبية، حيث يتم تحقيق الأداء الحديثة في مجموعات بيانات قياسية باللغة الإنجليزية. تتم إجراء مزيد من التجارب لتحليل مساهمات كل مكون في نهجنا وتوضيح كيفية مساعدة الطبقات المختلفة في T-GCN ABSA مع التحليل الكمي والنوعي.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا