تصف هذه الورقة مساهمتنا في المهمة المشتركة لإعادة تأييد Belz et al. (2021)، والذي يحقق في استنساخ التقييمات البشرية في سياق توليد اللغة الطبيعية. اخترنا توليد الورق من أوصاف الشركة باستخدام النماذج العميقة المفهوم إلى النص والنصوص العميقة: مجموعة البيانات التجميع والأنظمة "(Qader et al.، 2018) وتهدف إلى النسخ المتماثل، عن كثب إلى الأصل ممكن، التقييم البشري والمقارنة اللاحقة بين الأحكام الإنسانية ومقاييس التقييم التلقائي. هنا، نقوم أولا بتحديد مهمة جيل النص في ورقة قادر وآخرون. (2018). ثم، نحن نوثق كيف اقتربنا نسخينا من التقييم البشري للورقة. نناقش أيضا الصعوبات التي واجهناها والتي كانت المعلومات مفقودة. النسخ المتماثل لدينا له علاقة متوسطة إلى قوية (0.66 سبيرمان بشكل عام) مع النتائج الأصلية للقادير وآخرون. (2018)، ولكن بسبب المعلومات المفقودة حول مدى قادير وآخرون. (2018) مقارنة الأحكام الإنسانية بدرجات متري، امتنعنا عن إعادة إنتاج هذه المقارنة.
This paper describes our contribution to the Shared Task ReproGen by Belz et al. (2021), which investigates the reproducibility of human evaluations in the context of Natural Language Generation. We selected the paper Generation of Company descriptions using concept-to-text and text-to-text deep models: data set collection and systems evaluation'' (Qader et al., 2018) and aimed to replicate, as closely to the original as possible, the human evaluation and the subsequent comparison between the human judgements and the automatic evaluation metrics. Here, we first outline the text generation task of the paper of Qader et al. (2018). Then, we document how we approached our replication of the paper's human evaluation. We also discuss the difficulties we encountered and which information was missing. Our replication has medium to strong correlation (0.66 Spearman overall) with the original results of Qader et al. (2018), but due to the missing information about how Qader et al. (2018) compared the human judgements with the metric scores, we have refrained from reproducing this comparison.
المراجع المستخدمة
https://aclanthology.org/
تفترض الدراسات المسبقة عن جيل النص إلى النص عادة أن النموذج يمكن أن يكتشف ما هو الحضور في المدخلات وما يجب تضمينه في الإخراج عبر التعلم SEQ2SEQ، مع فقط بيانات التدريب الموازي وليس هناك إرشادات إضافية. ومع ذلك، لا يزال غير واضح ما إذا كانت النماذج الح
مع وجود شعبية متزايدة للمتحدثين الذكية، مثل الأمازون اليكسا، أصبح الكلام أحد أهم طرق التفاعل بين الإنسان والحاسوب. يمكن القول إن التعرف التلقائي على التعرف على الكلام (ASR) هو العنصر الأكثر أهمية في هذه الأنظمة، حيث ينتشر أخطاء في التعرف على الكلام إ
نحن نحفز واقتراح مجموعة من التحسينات البسيطة ولكنها فعالة لتوليد مفهوم إلى نص يسمى الياقوت: تعيين تعزز وبصورة ما بعد هوك تستلزم وإعادة التركيب.نوضح فعاليتها في مجال المنطق المنطقي الإنتاجية، A.K.a. مهمة Commongen، من خلال تجارب باستخدام نماذج BART و
يُبيّن هذا البحث مفهوم نحو الجملة، و مفهوم نحو النص، و الفروق بينهما،
و مجالات كلٍّ منهما، كما يحاول أن يُحدّد المعوّقات التي تمنع تقدّم هذا النوع من
الدرس اللغوي في جامعاتنا العربية، ثم يتوقّف عند اتّجاهات الدراسات اللغويّة التي
ظهر فيها هذا النو
يتم تدريب أنظمة توليد البيانات إلى النص على مجموعات البيانات الكبيرة، مثل Webnlg أو RO-Towire أو E2E أو DART. ما وراء مقاييس تقييم الرمز المميز التقليدي (بلو أو نيزك)، فإن القلق الرئيسي الذي يواجهه المولدات الأخيرة هو السيطرة على واقعية النص الذي تم