يتم تدريب أنظمة توليد البيانات إلى النص على مجموعات البيانات الكبيرة، مثل Webnlg أو RO-Towire أو E2E أو DART. ما وراء مقاييس تقييم الرمز المميز التقليدي (بلو أو نيزك)، فإن القلق الرئيسي الذي يواجهه المولدات الأخيرة هو السيطرة على واقعية النص الذي تم إنشاؤه فيما يتعلق بمواصفات بيانات الإدخال. نبلغ عن تجربتنا عند تطوير نظام تقييم واقعي للوصول التوظيف لتوليد البيانات إلى النص الذي نختبره على بيانات Webnlg و E2E. نحن نهدف إلى إعداد بيانات ذهبية تفوحية يدويا لتحديد الحالات التي ينقل فيها النص معلومات أكثر مما يبرره على أساس البيانات قيد التشغيل (إضافي) أو فشل في توصيل البيانات التي تعد جزءا من الإدخال (مفقود). أثناء تحليل العينات المرجعية (البيانات والنص)، واجهنا مجموعة من عدم اليقين المنهجي المرتبط بالحالات المتعلقة بالظواهر الضمنية في النص، وطبيعة المعرفة غير اللغوية نتوقع أن نشارك عند تقييم الواقعية. ونحن نستمد من خبرتنا مجموعة من المبادئ التوجيهية التقييم للوصول إلى اتفاق مرتفع فيما يتعلق بالمعقيقات بشأن هذه الحالات.
Data-to-text generation systems are trained on large datasets, such as WebNLG, Ro-toWire, E2E or DART. Beyond traditional token-overlap evaluation metrics (BLEU or METEOR), a key concern faced by recent generators is to control the factuality of the generated text with respect to the input data specification. We report on our experience when developing an automatic factuality evaluation system for data-to-text generation that we are testing on WebNLG and E2E data. We aim to prepare gold data annotated manually to identify cases where the text communicates more information than is warranted based on the in-put data (extra) or fails to communicate data that is part of the input (missing). While analyzing reference (data, text) samples, we encountered a range of systematic uncertainties that are related to cases on implicit phenomena in text, and the nature of non-linguistic knowledge we expect to be involved when assessing factuality. We derive from our experience a set of evaluation guidelines to reach high inter-annotator agreement on such cases.
المراجع المستخدمة
https://aclanthology.org/
تبنت النهج الحديثة التجريدية لجيل النص إلى النص بنية فك التشفير الناجحة للغاية أو المتغيرات منها.تولد هذه النماذج نصا يجيد (ولكن في كثير من الأحيان غير دقيقة) وإجراء سيئة للغاية عند تحديد المحتوى المناسب وطلبه بشكل متماسك.للتغلب على بعض هذه القضايا،
نقدم تاريخ DART، سجل بيانات منظم في المجال المفتوح إلى مجموعة بيانات جيل النص مع أكثر من 82 ألف حالة (لعبة السهام). يمكن أن تكون التعليقات التوضيحية البيانات إلى النص عملية مكلفة، خاصة عند التعامل مع الجداول التي تعد المصدر الرئيسي للبيانات المنظمة و
تعد تسجيل الإجابة القصيرة مهمة تقييم صحة نص قصير معين كاستجابة للسؤال الذي يمكن أن يأتي من مجموعة متنوعة من السيناريوهات التعليمية.كما هو المحتوى الوحيد، وليس النموذج، أمر مهم، يجب ألا يهم الصياغة الدقيقة بما في ذلك صريح الإجابة.ومع ذلك، فإن العديد م
تصف هذه الورقة مساهمتنا في المهمة المشتركة لإعادة تأييد Belz et al. (2021)، والذي يحقق في استنساخ التقييمات البشرية في سياق توليد اللغة الطبيعية. اخترنا توليد الورق من أوصاف الشركة باستخدام النماذج العميقة المفهوم إلى النص والنصوص العميقة: مجموعة الب
نظرا للتدريب الفعال من خلال التدريب والطلاقة في النصوص المتولدة، يتم اقتراح العديد من النماذج القائمة على إطار ترميز وحدة فك الترميز في مؤخرا للأجيال إلى نص البيانات. الترميز المناسب لبيانات الإدخال هو جزء أساسي من نماذج وحدة فك التشفير هذه. ومع ذلك،