ترغب بنشر مسار تعليمي؟ اضغط هنا

زيادة فهم مستوى الجملة من خلال تصنيف النص للوظائف المعرفية

Increasing Sentence-Level Comprehension Through Text Classification of Epistemic Functions

218   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

كلمة embeddings تلتقط المعنى الدلالي للكلمات الفردية.كيفية سد المعرفة اللغوية على مستوى Word مع تمثيل لغة مستوى الجملة هو مشكلة مفتوحة.تفحص هذه الورقة ما إذا كان يمكن تحقيق تمثيلات مستوى الجملة من خلال بناء قاعدة بيانات جملة مخصصة تركز على جانب واحد من معنى الجملة.إن الجوانب الدلالية الثلاثة المنفصلة الخاصة بنا هي ما إذا كانت الجملة: (1) تقوم (1) بإجراء علاقات سببية، (2) تشير إلى أن شيئين مرتبطين ببعضهما البعض، و (3) يعبر عن معلومات أو معرفة.توفر المصنفات الثلاثة معلومات معرفية حول محتوى الجملة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

حقق استنتاج اللغة الطبيعي (NLI) اهتماما كبيرا في السنوات الأخيرة؛ومع ذلك، ظل وعد تطبيق اختراقات NLI لمهام NLP الأخرى المنفذة غير الموحدة.في هذا العمل، نستخدم الفهم القروض متعدد الخيارات (MCRC) وفحص صحة واقعية لمهام التلخيص النصي (CFCS) للتحقيق في الأ سباب المحتملة لهذا.تظهر النتائج الخاصة بنا أن: (1) الطول الأقصر نسبيا في مجموعات بيانات NLI التقليدية هو التحدي الرئيسي الذي يحظر الاستخدام في تطبيقات المصب (التي تفعل أفضل مع سياقات أطول)؛(2) يمكن معالجة هذا التحدي عن طريق تحويل مجموعات بيانات فهم القراءة الغنية بالموارد إلى مجموعات بيانات NLI أطول؛و (3) تتفوق النماذج المدربة على مجموعات بيانات الفرضية المحولة والأطول الفرضية تلك المدربة باستخدام مجموعات بيانات NLI التقليدية القصيرة في مهام المصب في المقام الأول بسبب الفرق في أطوال الفرضية.
البحوث العلمية حول تحليل المشاعر في اللغة العربية محدودة جدا في الوقت الحالي. بينما يوجد العديد من تطبيقات تحليل المشاعر في اللغة الانكليزية, اللغة العربية مازالت تخطو خطى بطيئة في هذا المجال. في هذا البحث، نقوم بعرض تطبيق حول تحليل المشاعر في اللغ ة العربية عبر تطبيق مصنف مشاعر لتغريدات عربية. التغريدات تم تحليلها لكي نحصل على قطبية مشاعر (ايجابية او سلبية)، بما أن البيانات تم جمعها من شبكة التواصل الاجتماعي تويتر, فهذا يعكس أهميتها الكبيرة في الشرق الأوسط، حيث اللغة العربية هي اللغة المحكية.
يُبيّن هذا البحث مفهوم نحو الجملة، و مفهوم نحو النص، و الفروق بينهما، و مجالات كلٍّ منهما، كما يحاول أن يُحدّد المعوّقات التي تمنع تقدّم هذا النوع من الدرس اللغوي في جامعاتنا العربية، ثم يتوقّف عند اتّجاهات الدراسات اللغويّة التي ظهر فيها هذا النو ع من الدرس اللغوي، كما يحاول رصد واقع هذا الدرس اللساني في الجامعات السورية، من خلال نموذج واحد، هو جامعة البعث، و يختم البحث بأهم النتائج و التوصيات التي يرى أنها يمكن أن تسهم بتطوير هذا النوع من الدرس اللساني.
إن جودة أنظمة تبسيط النص الآلي بالكامل ليست جيدة بما يكفي للاستخدام في إعدادات العالم الحقيقي؛بدلا من ذلك، يتم استخدام التبسيط البشري.في هذه الورقة، ندرس كيفية تحسين تكلفة وجودة التبسيط البشري من خلال الاستفادة من الجماعة الجماعية.نقدم نهج الانصهار ا لجملة في الرسم البياني لزيادة التبسيط البشري ونهج إعادة النشر لكل من تحديد المبسط عالية الجودة والسماح باستهداف التبسيط بمستويات متفاوتة من البساطة.باستخدام DataSet Newsela (XU et al.، 2015) نظهر تحسينات متسقة على الخبراء في مستويات تبسيط مختلفة وتجد أن تبسيط الانصهار الجملة الإضافية تسمح بإخراج أبسط من التبسيط البشري وحدها.
يمثل تحديا كبيرا في تحليل بيانات Me-Dia الاجتماعية التي تنتمي إلى لغات تستخدم البرنامج النصي غير الإنجليزي هو طبيعتها المختلطة من التعليمات البرمجية.قدمت أثر الحدث الذي أحدث طرازات تضمين حديثة تضمين تضمين الحديث (كل من أحادي الأحادي S.A.bert و Multil ingal S.A.XLM-R) كهدوث نهج FOROMISP.في هذه الورقة، نوضح أداء هذا التضمين وزارة الدفاع إلى العوامل المتعددة، مثل الخلاط الشامل من الشفرة في DataSet، وكلفة بيانات التدريب.نحن منظمات تجريبية أن كبسولة مقدمة تقدمت حديثا يمكن أن تتفوق على مصنف مصنوع على Bertned English-Bert بالإضافة إلى مجموعة بيانات تدريب XLM-R فقط من حوالي 6500 عينة لبيانات Sinhala-English المزاجية للبيانات المختلطة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا