ترغب بنشر مسار تعليمي؟ اضغط هنا

تصنيف النص المختلط من التعليمات البرمجية باستخدام شبكات الكبسولة

Classification of Code-Mixed Text Using Capsule Networks

368   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يمثل تحديا كبيرا في تحليل بيانات Me-Dia الاجتماعية التي تنتمي إلى لغات تستخدم البرنامج النصي غير الإنجليزي هو طبيعتها المختلطة من التعليمات البرمجية.قدمت أثر الحدث الذي أحدث طرازات تضمين حديثة تضمين تضمين الحديث (كل من أحادي الأحادي S.A.bert و Multilingal S.A.XLM-R) كهدوث نهج FOROMISP.في هذه الورقة، نوضح أداء هذا التضمين وزارة الدفاع إلى العوامل المتعددة، مثل الخلاط الشامل من الشفرة في DataSet، وكلفة بيانات التدريب.نحن منظمات تجريبية أن كبسولة مقدمة تقدمت حديثا يمكن أن تتفوق على مصنف مصنوع على Bertned English-Bert بالإضافة إلى مجموعة بيانات تدريب XLM-R فقط من حوالي 6500 عينة لبيانات Sinhala-English المزاجية للبيانات المختلطة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

جيل النص هو مجال نشط للغاية في البحث في المجتمع اللغوي الحسابي.يعد تقييم النص الذي تم إنشاؤه مهمة صعبة وتم اقتراح نظريات ومقاييس متعددة على مر السنين.لسوء الحظ، يتم إدراج توليد النص والتقييم نسبيا نسبيا بسبب ندرة الموارد عالية الجودة في اللغات المختل طة من التعليمات البرمجية حيث يتم خلط الكلمات والعبارات من لغات متعددة في كلام واحد للنص والكلام.لمعالجة هذا التحدي، نقدم كوربا (المفصلي) لغرض لغة مختلطة شائعة على نطاق واسع هينجليشيلي (مزيج من اللغات الهندية والإنجليزية).يحتوي المفصلات على جمل هنشية التي تم إنشاؤها من قبل البشر بالإضافة إلى خوارزميتين تعتمد على القواعد يتوافق مع الجمل الهندية والإنجليزية الموازية.بالإضافة إلى ذلك، نوضح فعالية مقاييس التقييم المستخدمة على نطاق واسع على البيانات المختلطة من التعليمات البرمجية.ستسهل مجموعة بيانات المفصلات التقدم المحرز في مجال أبحاث توليد اللغة الطبيعية في اللغات المختلطة التعليمات البرمجية.
أصبحت قضية استرجاع المعلومات في يومنا هذا من أهم القضايا والتحدّيات التي تشغل العالم كنتيجة منطقية للتطوّر التكنولوجي المتسارع والتقدم الهائل في الفكر الإنساني والبحوث والدراسات العلمية في شتى فروع المعرفة وما رافقه من ازدياد في كميات المعلومات إلى ح دّ يصعب التحكم بها والتعامل معها. لذا نهدف في مشروعنا إلى تقديم نظام استرجاع معلومات يقوم بتصنيف المستندات حسب محتواها إلا أن عمليّة استرجاع المعلومات تحوي درجة من عدم التأكد في كل مرحلة من مراحلها لذا اعتمدنا على شبكات بيز للقيام بعملية التصنيف وهي شبكات احتماليّة تحوّل المعلومات إلى علاقات cause-and-effect و تعتبر واحدة من أهم الطرق الواعدة لمعالجة حالة عدم التأكد . في البدء نقوم بالتعريف بأساسيّات شبكات بيز ونشرح مجموعة من خوارزميّات بنائها وخوارزميّات الاستدلال المستخدمة ( ولها نوعان دقيق وتقريبي). يقوم هذه النظام بإجراء مجموعة من عمليّات المعالجة الأوليّة لنصوص المستندات ثم تطبيق عمليات إحصائية واحتمالية في مرحلة تدريب النظام والحصول على بنية شبكة بيز الموافقة لبيانات التدريب و يتم تصنيف مستند مدخل باستخدام مجموعة من خوارزميات الاستدلال الدقيق في شبكة بيز الناتجة لدينا. بما أنّ أداء أي نظام استرجاع معلومات عادة ما يزداد دقّة عند استخدام العلاقات بين المفردات (terms) المتضمّنة في مجموعة مستندات فسنأخذ بعين الاعتبار نوعين من العلاقات في بناء الشبكة: 1- العلاقات بين المفردات(terms). 2- العلاقات بين المفردات والأصناف(classes).
يتم تطبيق مصنف النصوص بانتظام على النصوص الشخصية، وترك مستخدمي هذه المصنفين عرضة لخرق الخصوصية.نقترح حلا لتصنيف النص الذي يحفظه الخصوصية التي تعتمد على الشبكات العصبية التنافعية (CNNS) والحساب الآمن متعدد الأحزاب (MPC).تتيح طريقتنا استنتاج تسمية فئة لنص شخصي بهذه الطريقة (1) لا يتعين على مالك النص الشخصي الكشف عن نصها لأي شخص بطريقة غير مشفرة، و (2) مالك النصلا يتعين على المصنف أن يكشف عن المعلمات النموذجية المدربة إلى مالك النص أو أي شخص آخر.لإظهار جدوى بروتوكولنا لتصنيف النص الخاص العملي، نفذناها في Fronten Fresk Framepten المستندة إلى Pytorch، باستخدام مخطط تقاسم سري معروف جيدا في الإعداد الصادق وغير الغريب.نحن نختبر وقت تشغيل مصنف نصي المحفوظ في الخصوصية لدينا، وهو سريع بما يكفي لاستخدامه في الممارسة العملية.
نقدم COTEXT، وهو نموذج ترميز ترميز مدرب مسبقا مدرب مسبقا، يتعلم السياق التمثيلي بين اللغة الطبيعية (NL) ولغة البرمجة (PL). باستخدام الإشراف الذاتي، تم تدريب COTEX مسبقا على لغة البرمجة الكبيرة لشركة Corpora لتعلم فهم عام للغة والرمز. يدعم COTEXT مهام NL-PL المصب مثل الرمز الملخص / الوثائق، وتوليد الرموز، والكشف عن العيوب، وتصحيح التعليمات البرمجية. نحن ندرب مشعك على مجموعات مختلفة من Corpus المتوفرة المتوفرة بما في ذلك البيانات BIMODAL 'و Unimodal'. هنا، بيانات BIMODAL هي مزيج من النصوص النصية والنصوص المقابلة، في حين أن البيانات غير المستخدمة هي مجرد مقتطفات رمز. نقيم أولا COTEXT مع التعلم متعدد المهام: نقوم بإجراء تلخيص الكود على 6 لغات برمجة مختلفة وصقل التعليمات البرمجية على كل من الحجم الصغير والمتوسط ​​المميز في DataSet Codexglue. كلنا إجراء تجارب مكثفة للتحقيق في COTEXT على مهام أخرى ضمن DataSet Codexglue، بما في ذلك توليد التعليمات البرمجية والكشف عن العيوب. نحن نتحمل باستمرار نتائج SOTA في هذه المهام، مما يدل على تنوع نماذجنا.
أظهرت نماذج الرؤية اللغوية المدربة مسبقا أداء رائعا حول مهمة الإجابة على السؤال المرئي (VQA). ومع ذلك، يتم تدريب معظم النماذج المدربة مسبقا من خلال النظر فقط في التعلم أحادي الأونلينغ، وخاصة اللغة الغنية بالموارد مثل اللغة الإنجليزية. تدريب هذه النما ذج للكمات متعددة اللغات طلب موارد الحوسبة عالية ومجموعات بيانات الرؤية متعددة اللغات التي تعيق تطبيقها في الممارسة العملية. لتخفيف هذه التحديات، نقترح نهج تقطير المعرفة لتوسيع نموذج للرؤية باللغة الإنجليزية (المعلم) في نموذج متعدد اللغات ومزوج التعليمات البرمجية (طالبة). على عكس أساليب تقطير المعرفة الحالية، والتي تستخدم فقط الإخراج من الطبقة الأخيرة من شبكة المعلم للتقطير، يتعلم نموذج الطالب الخاص بنا وتقليد المعلم من طبقات متعددة الوسائط (تشفير اللغة والرؤية) بأهداف تقطير مصممة بشكل مناسب لاستخراج المعرفة الإضافية وبعد كما نقوم بإنشاء مجموعة بيانات VQA متعددة اللغات متعددة اللغات متعددة اللغات وخلطها في أحد عشر جهازا مختلفا للنظر في اللغات الهندية والأوروبية المتعددة. تظهر النتائج التجريبية والتحليل المتعمق فعالية نموذج VQA المقترح على نماذج الرؤية المدربة مسبقا في الرؤية المدربة مسبقا في أحد عشر من إعدادات لغة متنوعة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا