ترغب بنشر مسار تعليمي؟ اضغط هنا

البسجة: السؤال العبري الإجابة على مجموعة البيانات

ParaShoot: A Hebrew Question Answering Dataset

437   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

ركزت أبحاث NLP باللغة العبرية إلى حد كبير على التورفولوجيا وبناء جملة، حيث تتوفر مجموعات البيانات المشروحة الغنية بروح التبعيات العالمية.ومع ذلك، تعد مجموعات البيانات الدلالية في العرض القصير، مما يعوق السلف الحاسم في تطوير تكنولوجيا NLP باللغة العبرية.في هذا العمل، نقدم البسجة، والسؤال الأول يجيب على DataSet في العبرية الحديثة.تتبع DataSet التنسيق والتعبئة المنهجية من المنهجية من التدقيق، وتحتوي على ما يقرب من 3000 من الأمثلة المشروحة، مماثلة لمجموعات بيانات الإجابة على الأسئلة الأخرى بلغات الموارد المنخفضة.نحن نقدم نتائج خط الأساس الأولى باستخدام نماذج مصممة على طراز برت صدر مؤخرا للعبرية، مما يدل على أن هناك مجالا مهما للتحسين في هذه المهمة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يوفر نظام الإجابة على الأسئلة التي توفر إجابة بالإضافة إلى تقديم إجابة تفسير للمنطق الذي يؤدي إلى تلك الإجابة بمزايا محتملة من حيث الناضجة والتمويل والثقة. تحقيقا لهذه الغاية، نقترح QED، إطارا غير قابل للتوسيع على الإبلاغ عن التفسيرات على الإبلاغ عن التفسيرات. يحدد Explanation QED العلاقة بين سؤال وجواب وفقا لمفاهيم الدلالية الرسمية مثل المساواة المرجعية والعصا والتنفيذية. وصفنا علنا ​​أن نطلق علنا ​​عن مجموعة بيانات مشروح من التفسيرات QED التي بنيت مجموعة فرعية من مجموعة بيانات أسئلة Google الطبيعية، وتقديم تقرير نماذج أساسية في مهمتين --- جيل التفسير بعد الوظائف بالنظر إلى إجابة ورد على سؤال مشترك وإجابة تفسير وبعد في الإعداد المشترك، تشير النتيجة الواعدة إلى أن التدريب على كمية صغيرة نسبيا من بيانات QED يمكن أن يحسن الإجابة على السؤال. بالإضافة إلى وصف الدوافع الرسمية والنورات الرسمية لنهج QED، فإننا نصف دراسة مستخدمين كبيرة تبين أن وجود تفسيرات QED يحسن بشكل كبير من قدرة الفئات غير المدربة على الأخطاء التي قدمتها خط الأساس القوي العصبي القوي.
تم إنشاء العديد من مجموعات البيانات لتدريب نماذج الفهم في القراءة، والسؤال الطبيعي هو ما إذا كان يمكننا دمجها لبناء النماذج التي (1) أداء أفضل على جميع مجموعات بيانات التدريب و (2) تعميم وتحويل أفضل بيانات جديدة إلى مجموعات البيانات الجديدة. عالج الع مل المسبق هذا الهدف من خلال تدريب شبكة واحدة في وقت واحد على مجموعات بيانات متعددة، والتي تعمل بشكل جيد في المتوسط ​​ولكنها عرضة للتوزيعات الفرعية المختلفة أو غير الضرورية ويمكن نقلها أسوأ مقارنة بالنماذج المصدر بأكثر تداخل مع DataSet المستهدف. يتمثل نهجنا في نموذج سؤال متعدد البيانات مستجيب مع مجموعة من خبراء DataSet واحد، من خلال تدريب مجموعة من وحدات محول محول خفيفة الوزن وخفيفة الوزن (Houlsby et al.، 2019) التي تشترك في نموذج محول أساسي. نجد أن خبراء مجموعة البيانات متعددة المحولات (صنع) تفوقوا جميع خطوط الأساس لدينا من حيث دقة التوزيع، والأساليب البسيطة القائمة على متوسط ​​المعلمة تؤدي إلى تحسين التعميم الصفرية وأداء قليل من الرصاص، مما يوفر قويا و نقطة انطلاق متعددة الاستخدامات لبناء أنظمة مفهوم القراءة الجديدة.
تصف هذه الدراسة تطوير سؤال مجتمعي برتغالي يرد على معيار في مجال ميليتوس السكري باستخدام نهج إيصال الأسئلة المعترف به (RQE). بالنظر إلى سؤال الفرضية، يهدف RQE إلى استرداد أسئلة متشابهة دلالة الشكل، أجاب بالفعل على أرشفة. إننا نبني كوربا رئيسيا باللغة البرتغالية مع 785 زوجا بين أسئلة الفرضية وأرشفة الأسئلة الإجابة تميزت بأحكام الأهمية من قبل خبراء طبيين. استنادا إلى Corpus القياسي، فإننا نستفيد وتقييم العديد من نهج RQE تتراوح من أساليب استرجاع المعلومات التقليدية إلى نماذج اللغة الكبيرة المدربة مسبقا وتقنيات الفرقة باستخدام مناهج التعلم إلى رتبة. تظهر نتائجنا التجريبية أن الأسلوب الإشراف على المحولات المدربين مدربا بلغات متعددة ومهام متعددة (موسى) يتفوق على البدائل. تظهر نتائجنا أيضا أن فروع الأساليب (التراص) بالإضافة إلى طريقة استرجاع المعلومات (الضوء) التقليدية (BM25) يمكن أن تنتج نتائج تنافسية. أخيرا، من بين الاستراتيجيات التي تم اختبارها، فإن أولئك الذين يستغلون سوى السؤال (وليس الإجابة)، وتقديم أفضل مفاضلة كفاءة الفعالية. الرمز متاح علنا.
مجردة ملكية مرغوبة لمتري التقييم المرجعي تقيس جودة محتوى الملخص هو أنه ينبغي أن يقدر مقدار المعلومات التي لدى الملخص مشتركا مع مرجع. لا يتداخل النص التقليدي المقاييس المستندة إلى النص مثل Rouge لتحقيق ذلك لأنهم يقتصرون على مطابقة الرموز، إما متعمدة أ و عبر Embeddings. في هذا العمل، نقترح متريا لتقييم جودة المحتوى الخاص بملخص باستخدام الإجابة على الأسئلة (QA). تقيس الأساليب المستندة إلى ضمان الجودة مباشرة معلومات الملخص تتداخل مع مرجع، مما يجعلها مختلفة بشكل أساسي عن مقاييس تداخل النص. نوضح الفوائد التجريبية للمقاييس القائم على ضمان الجودة من خلال تحليل لميبري مقترح، Qaeval. تتفوق Qaeval على مقاييس حديثة حديثة على معظم التقييمات باستخدام مجموعات البيانات القياسية، في حين أن تكون قادرة على المنافسة على الآخرين بسبب قيود النماذج الحديثة. من خلال تحليل دقيق لكل مكون من مكونات Qaeval، نحدد اختناقات أدائها وتقدير أن أدائها المحتمل للأعلى من المحتمل يفوق جميع المقاييس التلقائية الأخرى، مما يقترب من طريقة الهرم الذهبي القياسي
إلى جانب توفر مجموعات بيانات واسعة النطاق، مكنت هياكل التعلم العميق التقدم السريع في مهمة الإجابة على السؤال.ومع ذلك، فإن معظم مجموعات البيانات هذه باللغة الإنجليزية، وأدائيات النماذج متعددة اللغات الحديثة أقل بكثير عند تقييمها على البيانات غير الإنج ليزية.نظرا لتكاليف جمع البيانات العالية، فهي ليست واقعية للحصول على بيانات مشروحة لكل لغة رغبة واحدة لدعمها.نقترح طريقة لتحسين السؤال المتبادل الإجابة على الأداء دون الحاجة إلى بيانات مشروح إضافية، واستفادة نماذج توليد السؤال لإنتاج عينات اصطناعية في أزياء متصلة.نظهر أن الطريقة المقترحة تتيح التوفيق بشكل كبير على خطوط الأساس المدربين على بيانات اللغة الإنجليزية فقط.نبلغ عن أحدث طرف جديد في أربع مجموعات بيانات: MLQA و Xquad و Squad-It و PIAF (FR).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا