ترغب بنشر مسار تعليمي؟ اضغط هنا

خبراء DataSet واحد للحصول على سؤال متعدد البيانات

Single-dataset Experts for Multi-dataset Question Answering

348   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم إنشاء العديد من مجموعات البيانات لتدريب نماذج الفهم في القراءة، والسؤال الطبيعي هو ما إذا كان يمكننا دمجها لبناء النماذج التي (1) أداء أفضل على جميع مجموعات بيانات التدريب و (2) تعميم وتحويل أفضل بيانات جديدة إلى مجموعات البيانات الجديدة. عالج العمل المسبق هذا الهدف من خلال تدريب شبكة واحدة في وقت واحد على مجموعات بيانات متعددة، والتي تعمل بشكل جيد في المتوسط ​​ولكنها عرضة للتوزيعات الفرعية المختلفة أو غير الضرورية ويمكن نقلها أسوأ مقارنة بالنماذج المصدر بأكثر تداخل مع DataSet المستهدف. يتمثل نهجنا في نموذج سؤال متعدد البيانات مستجيب مع مجموعة من خبراء DataSet واحد، من خلال تدريب مجموعة من وحدات محول محول خفيفة الوزن وخفيفة الوزن (Houlsby et al.، 2019) التي تشترك في نموذج محول أساسي. نجد أن خبراء مجموعة البيانات متعددة المحولات (صنع) تفوقوا جميع خطوط الأساس لدينا من حيث دقة التوزيع، والأساليب البسيطة القائمة على متوسط ​​المعلمة تؤدي إلى تحسين التعميم الصفرية وأداء قليل من الرصاص، مما يوفر قويا و نقطة انطلاق متعددة الاستخدامات لبناء أنظمة مفهوم القراءة الجديدة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نقترح codeqa، وهو سؤالا حرة يرد على مجموعة البيانات لغرض فهم التعليمات البرمجية المصدر: إعطاء مقتطف رمز وسؤال، مطلوب إجابة نصية أن يتم إنشاؤها.يحتوي Codeqa على مجموعة بيانات Java مع 119،778 أزواج من الإجابات السؤال ومجموعة بيانات بيثون مع 70،085 زوجا للإجابة على الإجابات.للحصول على أسئلة وأجوبة طبيعية وفية، نقوم بتنفيذ القواعد النحوية والتحليل الدلالي لتحويل تعليقات التعليمات البرمجية إلى أزواج الإجابة على الأسئلة.نقدم عملية البناء وإجراء التحليل المنهجي لمجموعة البيانات الخاصة بنا.يتم عرض نتائج التجربة التي حققتها العديد من خطوط الأساس العصبية على DataSet لدينا ومناقشتها.في حين أن البحث عن الإجابة على السؤال والفهم قراءة الآلة يتطور بسرعة، إلا أن القليل من العمل السابق قد لفت الانتباه إلى إجابة سؤال التعليمات البرمجية.يمكن أن تكون هذه البيانات الجديدة هذه بمثابة معيار بحث مفيد لفهم شفرة المصدر.
ركزت أبحاث NLP باللغة العبرية إلى حد كبير على التورفولوجيا وبناء جملة، حيث تتوفر مجموعات البيانات المشروحة الغنية بروح التبعيات العالمية.ومع ذلك، تعد مجموعات البيانات الدلالية في العرض القصير، مما يعوق السلف الحاسم في تطوير تكنولوجيا NLP باللغة العبر ية.في هذا العمل، نقدم البسجة، والسؤال الأول يجيب على DataSet في العبرية الحديثة.تتبع DataSet التنسيق والتعبئة المنهجية من المنهجية من التدقيق، وتحتوي على ما يقرب من 3000 من الأمثلة المشروحة، مماثلة لمجموعات بيانات الإجابة على الأسئلة الأخرى بلغات الموارد المنخفضة.نحن نقدم نتائج خط الأساس الأولى باستخدام نماذج مصممة على طراز برت صدر مؤخرا للعبرية، مما يدل على أن هناك مجالا مهما للتحسين في هذه المهمة.
نحن نتعامل مع استجابة سؤال متعددة الاختيار.الحصول على معرفة المنطقية ذات الصلة بالسؤال والخيارات يسهل الاعتراف بالإجابة الصحيحة.ومع ذلك، تعاني نماذج التفكير الحالية من الضوضاء في المعرفة المستردة.في هذه الورقة، نقترح طريقة ترميز جديدة قادرة على إجراء الاعتراض والتصفية الناعمة.وهذا يساهم في حصاد وامتصاص المعلومات التمثيلية مع تدخل أقل من الضوضاء.نقوم بتجربة commonsenseqa.توضح النتائج التجريبية أن طريقتنا تعطي تحسينات كبيرة ومتسقة مقارنة بخدمات الأساس والقاعدة القائمة على روبرتا وألبرت.
في حين أن مجموعات بيانات الإجابة على الأسئلة المتنوعة (QA) اقترحت وساهمت بشكل كبير في تطوير نماذج التعلم العميق لمهام ضمان الجودة، فإن البيانات الحالية تقصر في جوانبين. أولا، نفتقر إلى مجموعات بيانات ضمان الجودة التي تغطي الأسئلة المعقدة التي تنطوي ع لى إجابات بالإضافة إلى عمليات التفكير للحصول عليها. نتيجة لذلك، لا تزال أبحاث ضمنيا في ضمان الجودة العددية تركز على حسابات بسيطة ولا توفر التعبيرات الرياضية أو الأدلة التي تبرر الإجابات. ثانيا، ساهم مجتمع ضمان الجودة في الكثير من الجهد لتحسين إمكانية تفسير نماذج QA. ومع ذلك، فإنهم يفشلون في إظهار عملية التفكير صراحة، مثل أمر الأدلة من أجل التفكير والتفاعلات بين الأدلة المختلفة. لمعالجة العيب المذكور أعلاه، نقدم Noahqa ومجموعة بيانات QA محادثة وثنائية اللغة مع أسئلة تتطلب التفكير العددي مع التعبيرات الرياضية المركبة. مع Noahqa، نقوم بتطوير رسم بياني لتفكير قابل للتفسير بالإضافة إلى متري التقييم المناسب لقياس جودة الإجابة. نقوم بتقييم حديثة نماذج ضمان الجودة المدربة باستخدام مجموعات بيانات QA الحالية على Noahqa وإظهار أن الأفضل من بينها يمكن فقط تحقيق 55.5 عشر درجات مطابقة محددة، في حين أن الأداء البشري هو 89.7. نقدم أيضا نموذجا جديدا في ضمان الجودة لتوليد رسم بياني للمنطق حيث لا يزال متري الرسم البياني للمنطق فجوة كبيرة مقارنة بمركبات البشر، على سبيل المثال، 28 درجات.
تعد المعلومات التي تطلبها خطوة أساسية للسؤال المفتوح الإجابة على جمع الأدلة الكفاءة من كوربوس كبيرة. في الآونة الأخيرة، أثبتت النهج التكرارية أن تكون فعالة للأسئلة المعقدة، من خلال استرداد أدلة جديدة بشكل متكرر في كل خطوة. ومع ذلك، فإن جميع الأساليب التكرارية الحالية تقريبا تستخدم استراتيجيات محددة مسبقا، إما تطبيق نفس وظيفة الاسترجاع عدة مرات أو إصلاح ترتيب وظائف استرجاع مختلفة، والتي لا يمكنها الوفاء بالمتطلبات المتنوعة من الأسئلة المختلفة. في هذه الورقة، نقترح استراتيجية رواية تكيفية تسعى للحصول على معلومات عن أسئلة مفتوحة، وهي AISO. على وجه التحديد، يتم تصميم عملية الاسترجاع والأجوبة بأكملها كعملية اتخاذ قرار Markov الملحوظ جزئيا، حيث يتم تعريف ثلاثة أنواع من عمليات استرجاع (مثل E.G.، BM25 و DPR وارتباط التشعبي) وعملية إجابة واحدة كإجراءات. وفقا للسياسة المستفادة، يمكن ل AISO اختيار إجراءات استرجاع مناسبة ستكيفا للبحث عن الأدلة المفقودة في كل خطوة، بناء على الأدلة التي تم جمعها واستفسلة إعادة صياغة، أو إخراج الإجابة مباشرة عندما تكون مجموعة الأدلة كافية للسؤال. تبين تجارب في تشكيلة مفتوحة و hotpotqa fullwiki، التي تخدم مع معايير قافلة واحدة مفتوحة ومتعددة النطاق، أن AISO تفوقت على جميع الأساليب الأساسية مع استراتيجيات محددة مسبقا فيما يتعلق بتقييمات الاسترجاع والإجابة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا