يوفر نظام الإجابة على الأسئلة التي توفر إجابة بالإضافة إلى تقديم إجابة تفسير للمنطق الذي يؤدي إلى تلك الإجابة بمزايا محتملة من حيث الناضجة والتمويل والثقة. تحقيقا لهذه الغاية، نقترح QED، إطارا غير قابل للتوسيع على الإبلاغ عن التفسيرات على الإبلاغ عن التفسيرات. يحدد Explanation QED العلاقة بين سؤال وجواب وفقا لمفاهيم الدلالية الرسمية مثل المساواة المرجعية والعصا والتنفيذية. وصفنا علنا أن نطلق علنا عن مجموعة بيانات مشروح من التفسيرات QED التي بنيت مجموعة فرعية من مجموعة بيانات أسئلة Google الطبيعية، وتقديم تقرير نماذج أساسية في مهمتين --- جيل التفسير بعد الوظائف بالنظر إلى إجابة ورد على سؤال مشترك وإجابة تفسير وبعد في الإعداد المشترك، تشير النتيجة الواعدة إلى أن التدريب على كمية صغيرة نسبيا من بيانات QED يمكن أن يحسن الإجابة على السؤال. بالإضافة إلى وصف الدوافع الرسمية والنورات الرسمية لنهج QED، فإننا نصف دراسة مستخدمين كبيرة تبين أن وجود تفسيرات QED يحسن بشكل كبير من قدرة الفئات غير المدربة على الأخطاء التي قدمتها خط الأساس القوي العصبي القوي.
A question answering system that in addition to providing an answer provides an explanation of the reasoning that leads to that answer has potential advantages in terms of debuggability, extensibility, and trust. To this end, we propose QED, a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. We describe and publicly release an expert-annotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset, and report baseline models on two tasks---post- hoc explanation generation given an answer, and joint question answering and explanation generation. In the joint setting, a promising result suggests that training on a relatively small amount of QED data can improve question answering. In addition to describing the formal, language-theoretic motivations for the QED approach, we describe a large user study showing that the presence of QED explanations significantly improves the ability of untrained raters to spot errors made by a strong neural QA baseline.
المراجع المستخدمة
https://aclanthology.org/
ركزت أبحاث NLP باللغة العبرية إلى حد كبير على التورفولوجيا وبناء جملة، حيث تتوفر مجموعات البيانات المشروحة الغنية بروح التبعيات العالمية.ومع ذلك، تعد مجموعات البيانات الدلالية في العرض القصير، مما يعوق السلف الحاسم في تطوير تكنولوجيا NLP باللغة العبر
تصف هذه الدراسة تطوير سؤال مجتمعي برتغالي يرد على معيار في مجال ميليتوس السكري باستخدام نهج إيصال الأسئلة المعترف به (RQE). بالنظر إلى سؤال الفرضية، يهدف RQE إلى استرداد أسئلة متشابهة دلالة الشكل، أجاب بالفعل على أرشفة. إننا نبني كوربا رئيسيا باللغة
مجردة ملكية مرغوبة لمتري التقييم المرجعي تقيس جودة محتوى الملخص هو أنه ينبغي أن يقدر مقدار المعلومات التي لدى الملخص مشتركا مع مرجع. لا يتداخل النص التقليدي المقاييس المستندة إلى النص مثل Rouge لتحقيق ذلك لأنهم يقتصرون على مطابقة الرموز، إما متعمدة أ
يقارن تقييم نماذج الرد على الأسئلة التوضيحية حول التوقعات النموذجية. ومع ذلك، اعتبارا من اليوم، فإن هذه المقارنة تعتمد في الغالب معجمية، وبالتالي تفتقد الإجابات التي لا تحتوي على تداخل جذري ولكن لا تزال مماثلة متشابهة دلالة، وبالتالي علاج الإجابات ال
في حين أن مجموعات بيانات الإجابة على الأسئلة المتنوعة (QA) اقترحت وساهمت بشكل كبير في تطوير نماذج التعلم العميق لمهام ضمان الجودة، فإن البيانات الحالية تقصر في جوانبين. أولا، نفتقر إلى مجموعات بيانات ضمان الجودة التي تغطي الأسئلة المعقدة التي تنطوي ع