في هذه الورقة، نناقش تفاصيل أنظمة الترجمة المختلفة (MT) التي قدمناها لمهمة Loresmt الإنجليزية Marathi.كجزء من هذه المهمة، قدمنا ثلاثة أنظمة ترجمة آلية عصبية مختلفة (NMT)؛نظام أساسي في اللغة الإنجليزية - المراثي، نظام ماريثي-إنجليزي خط الأساس، ونظام إنجليزي - مراثي يعتمد على تقنية الترجمة الخلفي.نستكشف أداء أنظمة NMT هذه بين لغات اللغة الإنجليزية والمراثي، والتي تشكل زوج لغة موارد منخفضة بسبب عدم توفر بيانات متوازية كافية.نستكشف أيضا أداء تقنية الترجمة الخلفي عندما يتم الحصول على البيانات المترجمة الخلفي من أنظمة NMT التي يتم تدريبها على كمية أقل من البيانات.من تجاربنا، نلاحظ أن تقنية الترجمة الخلفي يمكن أن تساعد في تحسين جودة MT على خط الأساس لزوج اللغة الإنجليزية المهاراتية.
In this paper, we discuss the details of the various Machine Translation (MT) systems that we have submitted for the English-Marathi LoResMT task. As a part of this task, we have submitted three different Neural Machine Translation (NMT) systems; a Baseline English-Marathi system, a Baseline Marathi-English system, and an English-Marathi system that is based on the back-translation technique. We explore the performance of these NMT systems between English and Marathi languages, which forms a low resource language pair due to unavailability of sufficient parallel data. We also explore the performance of the back-translation technique when the back-translated data is obtained from NMT systems that are trained on a very less amount of data. From our experiments, we observe that the back-translation technique can help improve the MT quality over the baseline for the English-Marathi language pair.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نصفنا (Team - Onenlp-IITH) مناهج الترجمة الآلية العصبية الخاصة بنا للماراثية الإنجليزية (كلا الاتجاه) ل LORESMT-20211.جربنا الترجمة الآلية العصبية القائمة على المحولات واستكشف استخدام ميزات لغوية مختلفة مثل نقاط البيع والتحول في وحدة ا
في هذه الورقة ونحن نستكشف تقنيات مختلفة للتغلب على تحديات الموارد المنخفضة في الترجمة الآلية العصبية (NMT) وتركز على وجه التحديد على حالة اللغة الإنجليزية الماراثية NMT. تتطلب أنظمة NMT كمية كبيرة من كورسا الموازية للحصول على ترجمات ذات نوعية جيدة. ن
نقدم نتائج المهمة المشتركة ل LORESMT 2021 التي تركز على الترجمة الآلية (MT) من بيانات CovID-19 لكل من اللغات المنطوقة والتسوق المنخفضة الموارد. تم إجراء تنظيم هذه المهمة كجزء من ورشة العمل الرابعة حول تكنولوجيات الترجمة الآلية لغات الموارد المنخفضة (
تم تطوير نماذج الترجمة للمجال المحدد لترجمة بيانات CovID من الإنجليزية إلى الأيرلندية لمهمة LORESMT 2021 المشتركة.تم تطبيق تقنيات التكيف عن المجال، باستخدام كوربوس 55K 55K تكييفها كوفي من المديرية العامة للترجمة.تم مقارنة أداء الدقيقة والضبط الجمنيات
نقدم أنظمة جامعة وسط فلوريدا للمهمة المشتركة ل LORESMT 2021، والمشاركة في أزواج الترجمة الإنجليزية والأيرلندية والإنجليزية المهاراتية.ركزنا جهودنا على تتبع المهمة المقيدة، وذلك باستخدام تعلم التحويل تجزئة الكلمات الفرعية لتعزيز نماذجنا بالنظر إلى كمي