نقدم نتائج المهمة المشتركة ل LORESMT 2021 التي تركز على الترجمة الآلية (MT) من بيانات CovID-19 لكل من اللغات المنطوقة والتسوق المنخفضة الموارد. تم إجراء تنظيم هذه المهمة كجزء من ورشة العمل الرابعة حول تكنولوجيات الترجمة الآلية لغات الموارد المنخفضة (LORESMT). يتم تقديم Corpora المتوازي والمتاحة للجمهور والتي تتضمن الاتجاهات التالية: English↔irish، English↔marathi، وتايوانية Language Language Chinese. تتكون بيانات التدريب من 8112 و 20933 و 128608، على التوالي. هناك مجموعات بيانات أحادية الأحادية الإضافية للماراثية والإنجليزية التي تتكون من 21901 شريحة. تعتمد النتائج المقدمة هنا على مداخل من إجمالي ثمانية فرق. قدم ثلاثة فرق أنظمة للإنجليز في حين أن خمسة فرق قدمت أنظمة ل EnglishMarathi. لسوء الحظ، لم تكن هناك عروض أنظمة لمهمة التايوانية للتايوانية. تم حساب أقصى أداء النظام باستخدام BLEU ومتابعة AS 36.0 للغة الإنجليزية - الأيرلندية، 34.6 للأيرلندية - الإنجليزية، 24.2 للغة الإنجليزية - الماراثي، و 31.3 للماراثي - الإنجليزية.
We present the findings of the LoResMT 2021 shared task which focuses on machine translation (MT) of COVID-19 data for both low-resource spoken and sign languages. The organization of this task was conducted as part of the fourth workshop on technologies for machine translation of low resource languages (LoResMT). Parallel corpora is presented and publicly available which includes the following directions: English↔Irish, English↔Marathi, and Taiwanese Sign language↔Traditional Chinese. Training data consists of 8112, 20933 and 128608 segments, respectively. There are additional monolingual data sets for Marathi and English that consist of 21901 segments. The results presented here are based on entries from a total of eight teams. Three teams submitted systems for English↔Irish while five teams submitted systems for English↔Marathi. Unfortunately, there were no systems submissions for the Taiwanese Sign language↔Traditional Chinese task. Maximum system performance was computed using BLEU and follow as 36.0 for English--Irish, 34.6 for Irish--English, 24.2 for English--Marathi, and 31.3 for Marathi--English.
المراجع المستخدمة
https://aclanthology.org/
تصف هذه الورقة مهمة Charles University الفرعية للمصطلحات المهمة المشتركة للترجمة في WMT21.الهدف من هذه المهمة هو تصميم نظام يترجم مع شروط معينة بناء على قاعدة بيانات المصطلحات المقدمة، مع الحفاظ على جودة الترجمة الشاملة عالية.تنافسنا في زوج اللغة الإ
نقدم أنظمة جامعة وسط فلوريدا للمهمة المشتركة ل LORESMT 2021، والمشاركة في أزواج الترجمة الإنجليزية والأيرلندية والإنجليزية المهاراتية.ركزنا جهودنا على تتبع المهمة المقيدة، وذلك باستخدام تعلم التحويل تجزئة الكلمات الفرعية لتعزيز نماذجنا بالنظر إلى كمي
تحديات مهمة كفاءة ترجمة الآلات التي تحديات المشاركين لجعل أنظمتهم أسرع وأصغر مع الحد الأدنى من التأثير على جودة الترجمة.ما مقدار الجودة للتضحية بالكفاءة يعتمد على التطبيق، لذلك تم تشجيع المشاركين على تقديم عروض متعددة تغطي مساحة المقاضيات.في المجموع،
نبلغ عن نتائج المهمة المشتركة WMT 2021 بشأن تقدير الجودة، حيث يتحدى التحدي هو التنبؤ بجودة إخراج أنظمة الترجمة الآلية العصبية على مستوى الكلمة ومستويات الجملة.ركزت هذه الطبعة على إضافات رواية رئيسيتين: (1) التنبؤ باللغات غير المرئية، أي إعدادات صفرية
نحن تصف مهمة Sigmorphon الثانية على التورفولوجيا غير المدعومة: الهدف من المهمة المشتركة SIGMORPHON 2021 على تجميع النماذج المورفولوجية غير المزدئة غير المنشأة هو أنواع الكلمات العنقودية من كوربوس نص الخام إلى النماذج.تحقيقا لهذه الغاية، نطلق سرورا لم