ترغب بنشر مسار تعليمي؟ اضغط هنا

على تضمين المتغيرات في الشبكات العصبية المتكررة للتعليم المصدري

On the Embeddings of Variables in Recurrent Neural Networks for Source Code

238   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تعتمد معالجة شفرة المصدر بشكل كبير على الأساليب المستخدمة على نطاق واسع في معالجة اللغة الطبيعية (NLP)، ولكنها تنطوي على تفاصيل يجب مراعاتها في الاعتبار لتحقيق جودة أعلى.مثال على هذا الخصوصية هو أن دلالات متغير محددة ليس فقط باسمها ولكن أيضا من خلال السياقات التي يحدث فيها المتغير.في هذا العمل، نطور embeddings الديناميكي، وهي آلية متكررة تضبط الدلالات المستفادة للمتغير عند حصولها على مزيد من المعلومات حول دور المتغير في البرنامج.نظهر أن استخدام المدينات الديناميكية المقترحة يحسن بشكل كبير من أداء الشبكة العصبية المتكررة، في إكمال التعليمات البرمجية ومهام إصلاح الأخطاء.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم الآن إنشاء أن نماذج اللغة العصبية الحديثة يمكن تدريبها بنجاح على لغات متعددة في وقت واحد دون تغييرات على الهندسة المعمارية الأساسية، وتوفير طريقة سهلة لتكييف مجموعة متنوعة من نماذج NLP لغات الموارد المنخفضة.ولكن ما نوع المعرفة المشتركة حقا بين الل غات داخل هذه النماذج؟هل يؤدي التدريب المتعدد اللغات في الغالب إلى محاذاة مساحات التمثيل المعجمية أو هل تمكن أيضا تقاسم المعرفة النحوية بحتة؟في هذه الورقة، نشرج أشكال مختلفة من التحويل المتبادل والبحث عن عواملها الأكثر تحديدا، باستخدام مجموعة متنوعة من النماذج والمهام التحقيق.نجد أن تعريض LMS لدينا بلغة ذات صلة لا تؤدي دائما إلى زيادة المعرفة النحوية في اللغة المستهدفة، وأن الظروف المثلى للنقل الدلالي المعجمي قد لا تكون الأمثل للتحويل النحوي.
الأساليب الحديثة لتحليل الدوائر الانتخابية هي مناهج إشراف أحادية اللغات التي تتطلب كمية كبيرة من البيانات المسمى التي سيتم تدريبها على، مما يحد من فائدتها إلى حفنة فقط من لغات الموارد العالية فقط. لمعالجة هذه المسألة في هذه المسألة لغات الموارد المنخ فضة، نقترح نواعد الشبكة العصبية المتكررة عالمية (UNIRNNG) وهي متغير متعدد اللغات من نموذج قواعد الشبكة العصبية المتكررة (RNNG) المتكررة (RNNG) لتحليل الدوائر الانتخابية. ينطوي UNIRNNG على تعلم التحويل عبر اللغات لمهمة تحليل الدوائر الانتخابية. يتم إلهام بنية UNIRNNG من حيث المبدأ ونظرية المعلمة التي اقترحها نام تشومسكي. تستخدم UNIRNNG المعرفة النموذجية اللغوية المتاحة كقيم ميزة داخل قاعدة بيانات WALS، للتعميم على لغات متعددة. بمجرد التدريب على Corpus PolyGlot PolyGlot المتنوع بما فيه الكفاية، يمكن تطبيقه على أي لغة طبيعية مما يجعلها محلل الدائرة الانتخابية اللازمة للغات. تكشف التجارب أن نهج خطوط خط الأساس المتوفرة في UNIRNNG المتفوقة بالنسبة لنا أكبر من أجل معظم اللغات المستهدفة التي تم اختبارها.
في اللغويات الحسابية، فقد تبين أن الهياكل الهرمية تجعل نماذج اللغة (LMS) أكثر تشبه الإنسان. ومع ذلك، فإن الأدب السابق كان غير ملائم حول استراتيجية تحليل النماذج الهرمية. في هذه الورقة، قامنا بالتحقيق في ما إذا كانت الهياكل الهرمية تجعل LMS أكثر تشبه الإنسان، وإذا كان الأمر كذلك، ما هي استراتيجية التحليل أكثر منطقية. من أجل معالجة هذا السؤال، قمنا بتقييم ثلاثة LMS ضد أوقات القراءة البشرية باللغة اليابانية مع هياكل المتفرعة اليسرى في الرأس: ذاكرة طويلة الأجل الطويلة (LSTM) كطراز متتابع ونواسيب الشبكة العصبية المتكررة (RNNGS) مع أعلى إلى أسفل واستراتيجيات تحليل الركن الأيسر كنماذج هرمية. أظهرت النمذجة الحاسوبية لدينا أن RNNGS الركن الأيسر تفوقت على RNNGS و LSTM من أعلى إلى أسفل، مما يشير إلى أن هياكل التسلسل الهرمي واليسرى من المعقول أكثر منطقية أكثر من الأعلى إلى أسفل أو هندسة متسلسلة. بالإضافة إلى ذلك، سيتم مناقشة العلاقات بين المعقول المعرفي و (1) حيرة، (2) تحليل، و (III) بحجم شعاع.
الشبكات العصبية هي طريقة أحدثت لآلة التعلم للعديد من المشاكل في NLP.نجاحهم في الترجمة الآلية ومهام NLP الأخرى هي ظاهرة، لكن قابلية الترجمة الشفوية تحديا.نريد معرفة كيف تمثل الشبكات العصبية معنى.من أجل القيام بذلك، نقترح فحص توزيع المعنى في تمثيل المس احة المتجهة للكلمات في الشبكات العصبية المدربة لمهام NLP.علاوة على ذلك، نقترح النظر في نظريات المعنى المختلفة في فلسفة اللغة وإيجاد منهجية ستمكننا من توصيل هذه المجالات.
يحقق إطار التشفير - فك التشفير النتائج الحديثة النتائج في مهام توليد المفاتيح (KG) من خلال التنبؤ بكل من الرافعات القصيرة الحالية التي تظهر في المستند المصدر والمشابط الغياب التي لا تفعل ذلك. ومع ذلك، فإن الاعتماد فقط على المستند المصدر يمكن أن يؤدي إلى توليد قواعد الرماية الغائب لا يمكن السيطرة عليها وغير دقيقة. لمعالجة هذه المشكلات، نقترح طريقة رواية قائمة على الرسم البياني يمكنها التقاط المعرفة الصريحة من المراجع ذات الصلة. يتمتع نموذجنا أولا بتستريح بعض أزواج المفاتيح المستندات التي تشبه المستند المصدر من مؤشر محدد مسبقا كمراجع. ثم يتم بناء رسم بياني غير متجانس لالتقاط العلاقات مع مستويات مختلفة من الحبيبية المستند المصدر والمراجع المستردة لها. لتوجيه عملية فك التشفير، يتم تقديم اهتمام هرمي وآلية النسخ، والتي تنسخ مباشرة الكلمات المناسبة من كل من المستند المصدر ومراجعها بناء على أهميتها وأهميتها. تظهر النتائج التجريبية على معايير KG متعددة أن النموذج المقترح يحقق تحسينات كبيرة ضد نماذج خط الأساس الأخرى، خاصة فيما يتعلق بالتنبؤ الغياب بالصيغة الهادفة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا