ترغب بنشر مسار تعليمي؟ اضغط هنا

الرسوم البيانية غير المتجانسة الشبكات العصبية لجيل المفتاح

Heterogeneous Graph Neural Networks for Keyphrase Generation

331   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يحقق إطار التشفير - فك التشفير النتائج الحديثة النتائج في مهام توليد المفاتيح (KG) من خلال التنبؤ بكل من الرافعات القصيرة الحالية التي تظهر في المستند المصدر والمشابط الغياب التي لا تفعل ذلك. ومع ذلك، فإن الاعتماد فقط على المستند المصدر يمكن أن يؤدي إلى توليد قواعد الرماية الغائب لا يمكن السيطرة عليها وغير دقيقة. لمعالجة هذه المشكلات، نقترح طريقة رواية قائمة على الرسم البياني يمكنها التقاط المعرفة الصريحة من المراجع ذات الصلة. يتمتع نموذجنا أولا بتستريح بعض أزواج المفاتيح المستندات التي تشبه المستند المصدر من مؤشر محدد مسبقا كمراجع. ثم يتم بناء رسم بياني غير متجانس لالتقاط العلاقات مع مستويات مختلفة من الحبيبية المستند المصدر والمراجع المستردة لها. لتوجيه عملية فك التشفير، يتم تقديم اهتمام هرمي وآلية النسخ، والتي تنسخ مباشرة الكلمات المناسبة من كل من المستند المصدر ومراجعها بناء على أهميتها وأهميتها. تظهر النتائج التجريبية على معايير KG متعددة أن النموذج المقترح يحقق تحسينات كبيرة ضد نماذج خط الأساس الأخرى، خاصة فيما يتعلق بالتنبؤ الغياب بالصيغة الهادفة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعتبر العلاقات المتطلالة الأساسية بين المفاهيم أمرا حاسما للتطبيقات التعليمية، مثل تخطيط المناهج الدراسية والدروس الذكي.في هذه الورقة، نقترح نهجا للتعليم ذات العلاقات ذات العلاقات ذات الصلة بالمفهوم الجديد، والتي تجمع بين كل من تمثيل المفهوم المستفاد ة من الرسم البياني غير المتجانس والمفهوم المفهوم المميزات الزوجية.علاوة على ذلك، نقوم بتوسيع CPRL في ظل الإعدادات الخاضعة للإشراف ضعيفا لجعل طريقةنا أكثر عملية، بما في ذلك التعلم العلاقات المتطلبات الأساسية من تبعيات كائن التعلم وتوليد بيانات التدريب مع برامج البيانات.تظهر تجاربنا على أربع مجموعات البيانات أن النهج المقترح يحقق نتائج أحدث النتائج مقارنة بالأساليب الحالية.
يتم جذب تصنيف المستندات متعددة الملصقات، وربط مثيل مستندات واحدة بمجموعة من الملصقات ذات الصلة، المزيد والمزيد من اهتمام البحوث. استكشاف الأساليب الحالية دمج المعلومات وراء النص، مثل بيانات تعريف الوثيقة أو هيكل الملصقات. ومع ذلك، فإن هذه الأساليب إم ا ببساطة الاستفادة من المعلومات الدلالية من البيانات الوصفية أو توظيف التسلسل الهرمي لملصق الوالدين والطفل المحدد مسبقا، وتجاهل الهياكل الرسومية غير المتجانسة للبيانات الوصفية والملصقات، والتي نعتقد أنها حاسمة لتصنيف مستندات دقيقة متعددة الملصقات. لذلك، في هذه الورقة، نقترح نهجا جديدا في الشبكة العصبية لتصنيف المستندات متعددة الملصقات، حيث يتم بناء الرسوم البيانية غير المتجانسة والتعلم باستخدام محولات الرسم البياني غير المتجانس. أحدهما هو الرسم البياني غير المتجانس في البيانات الأولية، والتي نماذج أنواع مختلفة من البيانات الوصفية وعلاقاتها الطوبولوجية. الآخر هو الرسم البياني الملصق غير المتجانس، الذي تم إنشاؤه بناء على كل من التسلسل الهرمي للملصقات والتمثيل الإحصائي. النتائج التجريبية على مجموعة من مجموعات البيانات القياسية تظهر النهج المقترح تفوق العديد من خطوط الأساس الحديثة.
تم تجاهل المعلومات النحوية والدلية الخارجية إلى حد كبير من قبل نماذج حل النواة العصبية الحالية.في هذه الورقة، نقدم نموذجا مقرا له من الرسوم البيانية غير متجانسة لإدماج الهياكل النحوية والدلالية للجمل.يحتوي الرسم البياني المقترح على رسم بياني فرعي سنو ي حيث يتم توصيل الرموز الرائعة بناء على شجرة التبعية، ورسم إلكتروني فرعي دلالي يحتوي على حجج ويستند كمستلزمات دورا دالايا كحواف.من خلال تطبيق شبكة انتباه الرسوم البيانية، يمكننا الحصول على تمثيل كلمة معدنية من الناحية النحوية وغير المعزز، والتي يمكن دمجها باستخدام طبقة تكامل اليقظة وآلية Gating.تجارب في OnTonotes 5.0 معيار المعيار إظهار فعالية نموذجنا المقترح.
أظهرت التقدم المحرز الأخير في نماذج اللغة المستندة إلى المحولات الاحترام نجاحا كبيرا في تعلم التمثيل السياقي للنص.ومع ذلك، نظرا لتعقيد الاهتمام من الدرجة الثانية، يمكن لمعظم نماذج المحولات مسبقا التعامل مع النص القصير نسبيا.لا يزال يمثل تحديا عندما ي تعلق الأمر بنمذة مستندات طويلة جدا.في هذا العمل، نقترح استخدام شبكة انتباه الرسوم البيانية أعلى نموذج المحولات مسبقا متوفرة لتعلم تضمين الوثائق.تتيح لنا شبكة انتباه الرسم البياني هذه الاستفادة من الهيكل الدلالي الرفيع المستوى للوثيقة.بالإضافة إلى ذلك، استنادا إلى نموذج وثيقة الرسم البياني لدينا، نقوم بتصميم استراتيجية تعليمية بسيطة بسيطة للتعبير عن نماذجنا بمقدار كبير من الكائنات الكبيرة.تجريبيا، نوضح فعالية نهجنا في تصنيف الوثائق ومهام استرجاع المستندات.
يهدف البحث إلى الاستفادة من وجود عدة وحدات معالجة مركزية بالإضافة إلى وحدات معالجة رسومية و استغلال العمليات الحسابية التي تقوم بها وحدات المعالجة الرسومية, بهدف إنشاء آلية لجدولة بيان موجه لا يحوي دائرة, تهدف إلى تقليل الاتصالات بين الموارد و جدولة المهام المترابطة بأفضل شكل ممكن.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا