ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكة تتبع السياق: النمذجة السياق المستندة إلى الرسم البياني للاعتراف علاقة الشريط الضمني

Context Tracking Network: Graph-based Context Modeling for Implicit Discourse Relation Recognition

375   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تهدف التعرف على علاقة الخطاب الضمني (IDRR) إلى تحديد العلاقات المنطقية بين جملتين مجاورة في الخطاب.تفشل النماذج الحالية في الاستفادة الكاملة من المعلومات السياقية التي تلعب دورا مهما في تفسير كل جملة محلية.في هذه الورقة، فإننا نقترحنا بالتالي شبكة تتبع السياق في الرسم البياني القائمة على الرسم البياني (شبكة CT) لنموذج سياق الخطاب ل IDRR.تقوم CT-Net أولا بتحويل الخطاب في الرسم البياني لرابطة الفقرة (PAG)، حيث تتبع كل جملة سياقها المرتبطة ارتباطا وثيقا من الخطاب المعقد من خلال أنواع مختلفة من الحواف.بعد ذلك، استخراج CT-NET تمثيل سياقي من PAG من خلال آلية تحديث تم تصميمه خصيصا، مما يمكن أن يدمج بفعالية من كل من دلالات السياق على مستوى الجملة ومستوى الرمز المميز.تشير التجارب على PDTB 2.0 إلى أن شبكة CT-NET أكبر أداء أفضل من النماذج التي نموذجها تقريبا السياق.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تم تحقيق معالم رائعة في نص مطابقة من خلال اعتماد آلية انتباه متقاطعة لالتقاط الروابط الدلالية ذات الصلة بين تمثيلين عقديين.ومع ذلك، يركز الاهتمام العادي عبر مستوى الروابط على مستوى الكلمات بين تسلسل المدخلات، وإهمال أهمية المعلومات السياقية.نقترح شبك ة التفاعل المعرفة في السياق (عملة معدنية) لمحاذاة متسلسلتين بشكل صحيح وتستنتج علاقتها الدلالية.على وجه التحديد، يتضمن كل كتلة تفاعل (1) آلية اعتبارية إعلامية في السياق لإدماج المعلومات السياقية بفعالية عند محاذاة متتسلالات، و (2) طبقة انصهار بوابة لتمثيلات محاذاة محاذاة مرنة.نحن نطبق كتل تفاعلية مكدسة متعددة لإنتاج محاذاة على مستويات مختلفة وتحسين نتائج الانتباه تدريجيا.تجارب على اثنين من مجموعات بيانات مطابقة الأسئلة والتحليلات التفصيلية توضح فعالية نموذجنا.
تهدف مهمة اكتشاف الحدث (ED) في استخراج المعلومات إلى الاعتراف وتصنيف كلمات الأحداث في النص. تميز التقدم الأخير نماذج لغوية متقدمة للمحولات المتقدمة (على سبيل المثال، بيرت) كعنصر حاسم في النماذج الحديثة للإد. ومع ذلك، فإن الحد الطول لنصوص الإدخال هو ح اجز لمثل هذه النماذج المحددة لأنها لا تستطيع تشفير سياق مستوي المستند طويل المدى الذي ثبت أنه مفيد لإد إد. لمعالجة هذه المشكلة، نقترح طريقة رواية لنموذج سياق مستوى المستندات لتحديد الجمل ذات الصلة بشكل حيوي في وثيقة التنبؤ بالحدث بالسجن الهدف. سيتم بعد ذلك زيادة الجملة المستهدفة بالجمل المختارة وتستهلكها النماذج اللغوية القائمة على المحولات لتعلم التمثيل المحسن. تحقيقا لهذه الغاية، يتم استخدام خوارزمية التعزيز لتدريب اختيار الجملة ذات الصلة من أجل إد. يتم بعد ذلك تقديم العديد من أنواع المعلومات لتشكيل وظيفة المكافآت لعملية التدريب، بما في ذلك أداء إد، وإشراك الجملة، وعلاقات الخطاب. تجاه تجاربنا الواسعة على مجموعات البيانات القياسية المتعددة تكشف عن فعالية النموذج المقترح، مما يؤدي إلى أداء جديد من الفنادق الجديدة.
تهدف مهمة التحقق من الحقائق القائمة على الطاولة إلى التحقق مما إذا كان البيان المحدد مدعوم من الجدول شبه المنظم المحدد. يلعب المنطق الرمزي مع العمليات المنطقية دورا حاسما في هذه المهمة. الأساليب الحالية الاستفادة من البرامج التي تحتوي على معلومات منط قية غنية لتعزيز عملية التحقق. ومع ذلك، نظرا لعدم وجود إشارات خاضعة للإشراف بالكامل في عملية توليد البرنامج، يمكن استخلاص البرامج الزائفة وعملها، مما يؤدي إلى عدم قدرة النموذج على العمليات المنطقية المفيدة. لمعالجة المشكلات المذكورة أعلاه، في هذا العمل، نقوم بصياغة مهمة التحقق من الحقائق القائمة على الطاولة كإطار لاسترجاع الأدلة والتفكير، حيث اقترح شبكة التحقق من الأدلة على مستوى المنطق وشبكة التحقق القائمة على الرسم البياني (LERGV). على وجه التحديد، نقوم أولا باسترجئة الأدلة التي تشبه البرامج على مستوى المنطق من الجدول المعطى والبيان كدليل تكميلي على الطاولة. بعد ذلك، نقوم بإنشاء رسم بياني لمستوى منطقي لالتقاط العلاقات المنطقية بين الكيانات والوظائف في الأدلة المستردة، وتصميم شبكة التحقق القائمة على الرسم البياني لإجراء المنطق المستندة إلى الرسم البياني على مستوى المنطق بناء على الرسم البياني الذي تم إنشاؤه لتصنيف النهائي علاقة استقامة. النتائج التجريبية على Tabract Tabract القياسي على نطاق واسع تظهر فعالية النهج المقترح.
في تصنيف علاقة الخطاب الضمني، نريد التنبؤ بالعلاقة بين الجمل المجاورة في غياب أي اتصال خطاب علني. هذا أمر صعب حتى بالنسبة للبشر، مما يؤدي إلى نقص البيانات المشروح، وهي حقيقة تجعل المهمة أكثر صعوبة في نهج التعلم الآلي الإشراف. في الدراسة الحالية، نؤدي تصنيف علاقة الخطاب الضمني دون الاعتماد على أي علاقة ضمنية المسمى. نحن غاضب من عدم وجود بيانات من خلال تفسير العلاقات الضمنية لتقليل المهمة إلى مشكلتين فرعيين: نمذجة اللغة وتصنيف علاقة خطاب صريحة، مشكلة أسهل بكثير. تبين نتائجنا التجريبية أن هذه الطريقة يمكن أن تتفوق حتى الآن على الرغم من أن الحديث، على الرغم من أن تكون أبسط بكثير من النماذج البديلة لأداء مماثل. علاوة على ذلك، نوضح أن الأداء المحقق قوي عبر المجالات كما اقترحته التجارب الصفرية في مجال مختلف تماما. يشير هذا إلى أن التطورات الحديثة في النمذجة اللغوية جعلت نماذج لغة جيدة بما فيه الكفاية في التقاط علاقات بين الجملة دون مساعدة من علامات الخطاب الصريحة.
تحتاج الجيل القادم من أنظمة المحادثة AI إلى: (1) لغة العملية تدريجيا، يجب أن تكون الرمز المميز أكثر استجابة وتمكين التعامل مع ظواض المحادثة مثل توقف مؤقت وإعادة التشغيل والتصحيحات الذاتية؛ (2) السبب السماح بشكل تدريجي بالمعنى الذي سيتم إنشاؤه بعد ما يقال؛ (3) أن تكون شفافة ويمكن التحكم فيها، مما يسمح للمصممين وكذلك النظام نفسه بوضع أسباب بسهولة لسلوك معين والخياط لمجموعات مستخدمين معينة، أو المجالات. في هذه الورقة القصيرة، نقدم العمل الأولي المستمر يجمع بين بناء الجملة الديناميكي (DS) - إطار Grammar التدريجي والدلي - مع إطار وصف الموارد (RDF). هذا يمهد الطريق لإنشاء المحللين الدلاليين التدريجيين الذين ينتجون تدريجيا الرسوم البيانية الدلالية RDF كصحة تتكشف في الوقت الفعلي. نحن أيضا الخطوط العريضة كيف يمكن دمج المحلل المحلل بمحرك التفكير تدريجي من خلال RDF. نقول أن DS-RDF Hybrid يرضي Desiderata المذكورة أعلاه، مما أسفر عن البنية التحتية الدلالية التي يمكن استخدامها لبناء مستجيب، في الوقت الفعلي، AI محادثة محادثة مفسورة يمكن تخصيصها بسرعة لتوفير مجموعات مستخدمين محددة مثل الأشخاص المصابين بالخرف.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا