ترغب بنشر مسار تعليمي؟ اضغط هنا

شبكة التفاعل السياق

Context-Aware Interaction Network for Question Matching

399   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم تحقيق معالم رائعة في نص مطابقة من خلال اعتماد آلية انتباه متقاطعة لالتقاط الروابط الدلالية ذات الصلة بين تمثيلين عقديين.ومع ذلك، يركز الاهتمام العادي عبر مستوى الروابط على مستوى الكلمات بين تسلسل المدخلات، وإهمال أهمية المعلومات السياقية.نقترح شبكة التفاعل المعرفة في السياق (عملة معدنية) لمحاذاة متسلسلتين بشكل صحيح وتستنتج علاقتها الدلالية.على وجه التحديد، يتضمن كل كتلة تفاعل (1) آلية اعتبارية إعلامية في السياق لإدماج المعلومات السياقية بفعالية عند محاذاة متتسلالات، و (2) طبقة انصهار بوابة لتمثيلات محاذاة محاذاة مرنة.نحن نطبق كتل تفاعلية مكدسة متعددة لإنتاج محاذاة على مستويات مختلفة وتحسين نتائج الانتباه تدريجيا.تجارب على اثنين من مجموعات بيانات مطابقة الأسئلة والتحليلات التفصيلية توضح فعالية نموذجنا.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تهدف التعرف على علاقة الخطاب الضمني (IDRR) إلى تحديد العلاقات المنطقية بين جملتين مجاورة في الخطاب.تفشل النماذج الحالية في الاستفادة الكاملة من المعلومات السياقية التي تلعب دورا مهما في تفسير كل جملة محلية.في هذه الورقة، فإننا نقترحنا بالتالي شبكة تت بع السياق في الرسم البياني القائمة على الرسم البياني (شبكة CT) لنموذج سياق الخطاب ل IDRR.تقوم CT-Net أولا بتحويل الخطاب في الرسم البياني لرابطة الفقرة (PAG)، حيث تتبع كل جملة سياقها المرتبطة ارتباطا وثيقا من الخطاب المعقد من خلال أنواع مختلفة من الحواف.بعد ذلك، استخراج CT-NET تمثيل سياقي من PAG من خلال آلية تحديث تم تصميمه خصيصا، مما يمكن أن يدمج بفعالية من كل من دلالات السياق على مستوى الجملة ومستوى الرمز المميز.تشير التجارب على PDTB 2.0 إلى أن شبكة CT-NET أكبر أداء أفضل من النماذج التي نموذجها تقريبا السياق.
في السؤال المرئي الرد على (VQA)، تركز الأساليب الطيفة الموجودة على التفاعل بين الصور والأسئلة. نتيجة لذلك، يتم تقسيم الإجابات إلى الأسئلة أو المستخدمة كملصقات فقط للتصنيف. من ناحية أخرى، تستخدم نماذج Trilinear مثل نموذج CTI بكفاءة معلومات فيما بين ال اعتراضات بين الإجابات والأسئلة والصور، مع تجاهل معلومات المشرفة داخل العملية. مستوحاة من هذه الملاحظة، نقترح إطارا جديدا للتفاعل Trilinear يسمى Mirtt (تعلم تشكيل التفاعل المتعدد الوسائط من محولات Trilinear)، مما يشتمل على آليات الاهتمام لالتقاط علاقات الوسائط المشتركة بين الوسائط والتعديل. علاوة على ذلك، نقوم بتصميم سير عمل من مرحلتين حيث يقلل نموذج Silinear النموذج الحر، مشكلة VQA مفتوحة العضوية في مشكلة VQA متعددة الخيارات. علاوة على ذلك، للحصول على تمثيلات دقيقة وجميلة متعددة الاستخدامات، فإننا قرب ما قبل تدريب Mirtt مع التنبؤ اللغوي الملثمين. تقوم طريقةنا بتحقيق الأداء الحديث في مهمة Visual7W Task و VQA-1.0 متعددة الخيارات ومفتوحة خطوط الأساس Silinear على مجموعات بيانات VQA-2.0 و TDIUC و GQA.
يتطلب توليد النصوص في الأوراق العلمية لا يتطلب فقط التقاط المحتوى الوارد في الإدخال المحدد ولكن في كثير من الأحيان اكتسب المعلومات الخارجية المسماة السياق.نحن ندفع توليد النص العلمي من خلال اقتراح مهمة جديدة، وهي جيل نصي على دايين السياق في المجال ال علمي، بهدف استغلال مساهمات السياق في النصوص المتولدة.تحقيقا لهذه الغاية، نقدم رواية تحديا على مجموعة بيانات علمية واسعة النطاق للجمول النصي على علم السياق (Scixgen)، والتي تتكون من ورقات 205،304 المشروح جيدا مع مراجع كاملة للأشياء المستخدمة على نطاق واسع (مثل الجداول والأرقام والجوارخ)ورقة.نحن معيارين شمولين، باستخدام أحدث الفنون، فعالية مجموعة بيانات Scixgen التي تم إنشاؤها حديثا في توليد الوصف والفقرة.سيتم توفير مجموعة البيانات والمعايير الخاصة بنا متاحة للجمهور لتسهيل أبحاث جيل النص العلمي.
في هذه الورقة، نركز على مشكلة الكلمات الرئيسية ومطابقة المستندات من خلال النظر في مستويات ذات صلة مختلفة. في نظام توصيتنا، يتبع أشخاص مختلفون الكلمات الرئيسية الساخنة المختلفة باهتمام. نحتاج إلى إرفاق المستندات إلى كل كلمة رئيسية ثم توزيع المستندات ع لى الأشخاص الذين يتبعون هذه الكلمات الرئيسية. يجب أن تحتوي المستندات المثالية على نفس الموضوع مع الكلمة الأساسية، والتي نسميها ذات أهمية تدرك الموضوع. بمعنى آخر، وثائق الأهمية ذات الصلة بالموضوع أفضل من تلك الأهمية جزئيا في هذا التطبيق. ومع ذلك، فإن المهام السابقة لا تحدد أبدا أهمية علم الموضوع بوضوح. لمعالجة هذه المشكلة، نحدد صلة ثلاثية المستوى بمهمة مطابقة الوثيقة للكلمة الرئيسية: الأهمية ذات الصلة بالموضوع، والأهمية جزئيا والأهمية. لالتقاط الأهمية بين الكلمة الرئيسية القصيرة والوثيقة في المستويات الثلاثة المذكورة أعلاه، لا ينبغي لنا الجمع بين الموضوع الكامن فقط من الوثيقة بتمثيلها العصبي العميق، ولكن أيضا التفاعلات المعقدة النموذجية بين الكلمة الرئيسية والوثيقة. تحقيقا لهذه الغاية، نقترح نموذجا متطابقا على تفاعل ثنائي مرحلتين ومطابقة النص (TITA). من حيث الموضوع - أدرك "، نقدم نموذج موضوع عصبي لتحليل موضوع المستند ثم استخدامه لمزيد من تشفير المستند. من حيث التفاعل من مرحلتين "، نقترح مراحل متتالية لنموذج التفاعلات المعقدة بين الكلمة الرئيسية والوثيقة. تكشف التجارب الواسعة أن تيتا تفوقت على خطوط الأساس الأخرى المصممة بشكل جيد وتظهر أداء ممتاز في نظام توصيتنا.
تعتمد توصية العلامات على وظيفة الترتيب لعلامات Top-K أو طريقة توليد التشغيل التلقائي.ومع ذلك، فإن الطرق السابقة تهمل واحدة من اثنين من الخصائص المتضاربة التي يبدو أنها مرغوبة للغاية لمجموعة العلامة: مناسبا والاعتماد بين الاعتماد.في حين فشل نهج التصني ف في معالجة الاعتماد بين العلامات بين العلامات عندما تكون في المرتبة، فإن النهج التلقائي فشل في اتخاذ أمر في الاعتبار لأنه مصمم لاستخدام العلاقات المتسلسلة بين الرموز.نقترح طريقة توليد تسلسل غبيهة لتوصية العلامات، حيث يتم إنشاء العلامة التالية مستقلة عن ترتيب العلامات التي تم إنشاؤها وترتيب علامات الحقيقة الأرضية التي تحدث في بيانات التدريب.النتائج التجريبية على نطيفين مختلفين، إنستغرام ومكدس تجاوز، تبين أن طريقتنا متفوقة بشكل كبير على النهج السابقة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا