تتمثل الوصفة الحالية لأداء نموذج أفضل داخل NLP في زيادة حجم نموذج البيانات والتدريب.في حين أن ذلك يعطينا نماذج مع نتائج رائعة بشكل متزايد، إلا أنها تجعل من الصعب تدريب ونشر نماذج أحدث ل NLP بسبب زيادة التكاليف الحاسوبية.ضغط النموذج هو مجال للبحث الذي يهدف إلى تخفيف هذه المشكلة.يشمل هذا المجال أساليب مختلفة تهدف إلى الحفاظ على أداء نموذج أثناء تقليل حجمها.واحدة من هذه الأسلوب هو تقطير المعرفة.في هذه المقالة، نحقق في تأثير تقطير المعرفة لنماذج التعرف على الكيان المسمى باللغة السويدية.نظهر أنه في حين أن بعض نماذج علامات التسلسل تستفيد من تقطير المعرفة، وليس كل النماذج تفعل.هذا يطالبنا بطرح أسئلة حول المواقف التي تنفجر المعرفة النماذج مفيدة.نحن أيضا السبب في تأثير تقطير المعرفة على التكاليف الحاسوبية.
The current recipe for better model performance within NLP is to increase model size and training data. While it gives us models with increasingly impressive results, it also makes it more difficult to train and deploy state-of-the-art models for NLP due to increasing computational costs. Model compression is a field of research that aims to alleviate this problem. The field encompasses different methods that aim to preserve the performance of a model while decreasing the size of it. One such method is knowledge distillation. In this article, we investigate the effect of knowledge distillation for named entity recognition models in Swedish. We show that while some sequence tagging models benefit from knowledge distillation, not all models do. This prompts us to ask questions about in which situations and for which models knowledge distillation is beneficial. We also reason about the effect of knowledge distillation on computational costs.
المراجع المستخدمة
https://aclanthology.org/
للحد من حجم النموذج ولكن الاحتفاظ بالأداء، كنا نعتمد في كثير من الأحيان على تقطير المعرفة (دينار كويتي) الذي ينقل المعرفة من نموذج المعلم الكبير إلى نموذج طالب أصغر. ومع ذلك، فإن KD على مجموعات بيانات متعددة الوسائط مثل مهام اللغة الرؤية غير مستكشفة
في هذه الورقة، نطبق تقطير المعرفة الذاتية لتلخيص النص الذي نقوله أنه يمكن أن يخفف من مشاكل في الحد الأقصى للتدريب احتمالية على مجموعات بيانات مرجعية واحدة وصاخبة.بدلا من الاعتماد على ملصقات توضيحية ذات ساخنة واحدة، يتم تدريب نموذج تلخيص الطلاب لدينا
تم إثبات المشفرات المستندة إلى المحولات المسبدة مسبقا مثل بيرت لتحقيق الأداء الحديث في العديد من مهام NLP العديدة. على الرغم من نجاحهم، فإن ترميز نمط بيرت كبير الحجم ولديها زمن بيانات عالية أثناء الاستدلال (خاصة في آلات وحدة المعالجة المركزية) مما يج
تجادل الدراسات الحديثة بأن تقطير المعرفة يعد إلى ترجمة الكلام (ST) باستخدام النماذج الطرفية إلى النهاية.في هذا العمل، يمكننا التحقيق في تأثير تقطير المعرفة مع SC CASCADE باستخدام نماذج الترجمة التلقائية للكلام (ASR) ونماذج الترجمة الآلية (MT).نحن نوف
على الرغم من أن النماذج الكبيرة المدربة مسبقا (E.G.، Bert، Ernie، Xlnet، GPT3 وما إلى ذلك) قدمت أداء أعلى في النمذجة SEQ2SEQ، وغالبا ما تعوق عمليات نشرها في تطبيقات العالم الحقيقي بواسطة الحسابات المفرطة وطلب الذاكرة المعنية. بالنسبة للعديد من التطبي