ترغب بنشر مسار تعليمي؟ اضغط هنا

حدود تقطير المعرفة لتعلم تحويل الصفر

Limitations of Knowledge Distillation for Zero-shot Transfer Learning

317   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تم إثبات المشفرات المستندة إلى المحولات المسبدة مسبقا مثل بيرت لتحقيق الأداء الحديث في العديد من مهام NLP العديدة. على الرغم من نجاحهم، فإن ترميز نمط بيرت كبير الحجم ولديها زمن بيانات عالية أثناء الاستدلال (خاصة في آلات وحدة المعالجة المركزية) مما يجعلها غير جذابة للعديد من التطبيقات عبر الإنترنت. قدمت أساليب الضغط والتقطير مؤخرا طرقا فعالة لتخفيف هذا القصور. ومع ذلك، فإن محور هذه الأعمال كان أساسا في ترميز أحادي الأونلينغ. بدافع من النجاحات الأخيرة في التعلم عبر التحويل المتبادل في صفر تسديدة باستخدام ترميز مسببات اللغات المسبق، مثل MBERT، فإننا نقيم فعالية تقطير المعرفة (دينار كويتي) خلال مرحلة الاحتجاج وأثناء مرحلة ضبط الدقيقة على نماذج بيرت متعددة اللغات. نوضح أنه في تناقض الملاحظة السابقة في حالة التقطير أحادي الأونلينغ، في الإعدادات المتعددة اللغات، يكون التقطير أثناء الاحتجاز أكثر فعالية من التقطير أثناء ضبط الصفر عن التعلم تحويل الصفر. علاوة على ذلك، فإننا نلاحظ أن التقطير أثناء ضبط الرصيف قد يضر أداء الصفر اللغوي الصفر. أخيرا، نوضح أن تقطير نموذج أكبر (بيرت كبير) ينتج عن أقوى النموذج المقطر الذي يؤدي أفضل سواء على لغة المصدر وكذلك اللغات المستهدفة في إعدادات الطلقة الصفرية.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

للحد من حجم النموذج ولكن الاحتفاظ بالأداء، كنا نعتمد في كثير من الأحيان على تقطير المعرفة (دينار كويتي) الذي ينقل المعرفة من نموذج المعلم الكبير إلى نموذج طالب أصغر. ومع ذلك، فإن KD على مجموعات بيانات متعددة الوسائط مثل مهام اللغة الرؤية غير مستكشفة نسبيا، وهضم معلومات متعددة الوسائط تحديا لأن طرائق مختلفة تقدم أنواعا مختلفة من المعلومات. في هذه الورقة، نقوم بإجراء دراسة تجريبية واسعة النطاق للتحقيق في أهمية وآثار كل طريقة في تقطير المعرفة. علاوة على ذلك، نقدم إطارا لتقطير المعرفة متعددة الوسائط، وقطاع التقطير الخاص بالطرياء (MSD)، لنقل المعرفة من المعلم عن مهام متعددة الوسائط عن طريق تعلم سلوك المعلم داخل كل طريقة. تهدف الفكرة إلى تحية التنبؤات الخاصة بنوية المعلم من خلال إدخال شروط الخسائر المساعدة لكل طريقة. علاوة على ذلك، نظرا لأن كل طريقة لها اتفاقية مختلفة بالنسبة للتنبؤات، فإننا نحدد درجات الرافية لكل طريقة وتحقيق في مخططات الترجيح القائم على الرافية للخسائر الإضافية. ندرس نهج تعليم الوزن لمعرفة الأثقال المثلى على شروط الخسارة هذه. في تحليلنا التجريبي، نقوم بفحص اتفاقية كل طريقة في KD، وأوضح فعالية نظام الترجيح في MSD، وإظهار أنه يحقق أداء أفضل من KD على أربعة مجموعات بيانات متعددة الوسائط.
في هذه الورقة، نطبق تقطير المعرفة الذاتية لتلخيص النص الذي نقوله أنه يمكن أن يخفف من مشاكل في الحد الأقصى للتدريب احتمالية على مجموعات بيانات مرجعية واحدة وصاخبة.بدلا من الاعتماد على ملصقات توضيحية ذات ساخنة واحدة، يتم تدريب نموذج تلخيص الطلاب لدينا مع توجيهات من المعلم الذي يولد ملصقات سلاسة للمساعدة في تنظيم التدريب.علاوة على ذلك، لتحسين نموذج عدم اليقين أثناء التدريب، نقدم إشارات متعددة الضوضاء لكل من نماذج المعلم والطلاب.نوضح تجريبيا في ثلاثة معايير أن إطار عملائنا يعزز أداء كل من الملاحظات المحددة أو غير مسبوقة تحقيق نتائج حالة من الفنون.
حققت نماذج التضمين السياقية المدربة مسبقا متعددة اللغات (Devlin et al.، 2019) أداء مثير للإعجاب على مهام نقل اللغات الصفرية.من خلال إيجاد استراتيجية ضبط الدقيقة الأكثر فعالية لضبط هذه النماذج على لغات الموارد عالية الموارد بحيث تقوم بتحويلاتها جيدا ل غات اللغات الصفرية هي مهمة غير تافهة.في هذه الورقة، نقترح رواية ميتا المحسن إلى طبقات ناعمة في طبقات النموذج المدرب مسبقا لتجميدها أثناء الضبط.نحن ندرب ميتا المحسن عن طريق محاكاة سيناريو نقل الصفر بالرصاص.تشير النتائج على الاستدلال اللغوي المتبادل اللغوي إلى أن نهجنا يحسن على خط الأساس البسيط للضبط و X-Maml (Nooralahzadeh et al.، 2020).
تجادل الدراسات الحديثة بأن تقطير المعرفة يعد إلى ترجمة الكلام (ST) باستخدام النماذج الطرفية إلى النهاية.في هذا العمل، يمكننا التحقيق في تأثير تقطير المعرفة مع SC CASCADE باستخدام نماذج الترجمة التلقائية للكلام (ASR) ونماذج الترجمة الآلية (MT).نحن نوف ر المعرفة من طراز المعلم بناء على النصوص البشرية لطراز الطلاب بناء على النسخ الخاطئة.أثبتت نتائجنا التجريبية أن تقطير المعرفة مفيد لشارع Cascade.كشف مزيد من التحقيق الذي يجمع تقطير المعرفة والضبط بشكل جيد أن الجمع بين اثنين من أزواج اللغة: الإنجليزية - الإيطالية والإسبانية الإنجليزية.
يهدف سؤال متعدد اللغات، الرد على الرسم البياني للمعرفة (KGQA) إلى استخلاص إجابات من الرسم البياني المعرفي (KG) للأسئلة بلغات متعددة. لتكون قابلة للتطبيق على نطاق واسع، نركز على إعداد نقل الطلقة الصفرية. هذا هو، يمكننا فقط الوصول إلى البيانات التدريبي ة فقط بلغة موارد عالية، بينما تحتاج إلى الإجابة على أسئلة متعددة اللغات دون أي بيانات معدنية باللغات المستهدفة. يتم تشغيل نهج مباشر إلى نماذج متعددة اللغات المدربة مسبقا (على سبيل المثال، MBERT) للنقل عبر اللغات، ولكن هناك فجوة كبيرة من الأداء KGQA بين المصدر واللغات المستهدفة. في هذه الورقة، نستمسى تحريض معجم ثنائي اللغة دون مقابل (BLI) لخريطة الأسئلة التدريبية في لغة المصدر في تلك الموجودة في اللغة المستهدفة مثل بيانات التدريب المعزز، والتي تتحل إلى عدم تناسق اللغة بين التدريب والاستدلال. علاوة على ذلك، نقترح استراتيجية تعليمية عدائية لتخفيف اضطراب بناء الجملة في البيانات المعززة، مما يجعل النموذج يميل إلى كل من اللغة والبنيات الاستقلال. وبالتالي، فإن نموذجنا يضيق الفجوة في تحويل صفرية عبر اللغات. التجارب على مجموعة بيانات KGQA متعددة اللغات مع 11 لغة موارد صفرية تحقق من فعاليتها.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا