ترغب بنشر مسار تعليمي؟ اضغط هنا

تقطير المعرفة الذاتية صاخبة لتلخيص النص

Noisy Self-Knowledge Distillation for Text Summarization

332   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في هذه الورقة، نطبق تقطير المعرفة الذاتية لتلخيص النص الذي نقوله أنه يمكن أن يخفف من مشاكل في الحد الأقصى للتدريب احتمالية على مجموعات بيانات مرجعية واحدة وصاخبة.بدلا من الاعتماد على ملصقات توضيحية ذات ساخنة واحدة، يتم تدريب نموذج تلخيص الطلاب لدينا مع توجيهات من المعلم الذي يولد ملصقات سلاسة للمساعدة في تنظيم التدريب.علاوة على ذلك، لتحسين نموذج عدم اليقين أثناء التدريب، نقدم إشارات متعددة الضوضاء لكل من نماذج المعلم والطلاب.نوضح تجريبيا في ثلاثة معايير أن إطار عملائنا يعزز أداء كل من الملاحظات المحددة أو غير مسبوقة تحقيق نتائج حالة من الفنون.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يتم استخدام تقطير المعرفة (KD) على نطاق واسع لضغط ونشر نماذج لغة كبيرة مدربة مسبقا على أجهزة EDGE لتطبيقات العالم الحقيقي.ومع ذلك، فإن مساحة البحث واحدة مهملة هي تأثير الملصقات الصاخبة (التالفة) على KD.نقدم، إلى حد علمنا، أول دراسة حول الملكية الدماغ ية مع ملصقات صاخبة في فهم اللغة الطبيعية (NLU).نحن توثق نطاق المشكلة وتقديم طريقتين لتخفيف تأثير ضوضاء التسمية.تشير التجارب على مرجع الغراء إلى أن أساليبنا فعالة حتى تحت مستويات ضوضاء عالية.ومع ذلك، تشير نتائجنا إلى أن المزيد من البحث ضروري للتعامل مع ضجيج الملصقات تحت KD.
نحن ندرس تحليل عمرو متعدد اللغات من منظور تقطير المعرفة، حيث يكون الهدف هو تعلم وتحسين محلل عمرو متعدد اللغات باستخدام محلل إنجليزي موجود كمعلم لها.نحن تقيد استكشافنا في إعداد صارم متعدد اللغات: هناك نموذج واحد لتحليل جميع اللغات المختلفة بما في ذلك اللغة الإنجليزية.نحدد أن المدخلات الصاخبة والإخراج الدقيق هي مفتاح التقطير الناجح.جنبا إلى جنب مع التدريب المسبق الواسع، نحصل على محلل عمري الذي يتجنب عروضه جميع النتائج التي تم نشرها مسبقا على أربعة لغات أجنبية مختلفة، بما في ذلك الهوامش الألمانية والإسبانية والإيطالية والصينية، بواسطة هوامش كبيرة (تصل إلى 18.8 نقطة برائحة على الصينية وفي المتوسط 11.3نقاط smatch).يحقق محللنا أيضا أداء قابلا للمقارنة على اللغة الإنجليزية إلى أحدث المحللين باللغة الإنجليزية فقط.
للحد من حجم النموذج ولكن الاحتفاظ بالأداء، كنا نعتمد في كثير من الأحيان على تقطير المعرفة (دينار كويتي) الذي ينقل المعرفة من نموذج المعلم الكبير إلى نموذج طالب أصغر. ومع ذلك، فإن KD على مجموعات بيانات متعددة الوسائط مثل مهام اللغة الرؤية غير مستكشفة نسبيا، وهضم معلومات متعددة الوسائط تحديا لأن طرائق مختلفة تقدم أنواعا مختلفة من المعلومات. في هذه الورقة، نقوم بإجراء دراسة تجريبية واسعة النطاق للتحقيق في أهمية وآثار كل طريقة في تقطير المعرفة. علاوة على ذلك، نقدم إطارا لتقطير المعرفة متعددة الوسائط، وقطاع التقطير الخاص بالطرياء (MSD)، لنقل المعرفة من المعلم عن مهام متعددة الوسائط عن طريق تعلم سلوك المعلم داخل كل طريقة. تهدف الفكرة إلى تحية التنبؤات الخاصة بنوية المعلم من خلال إدخال شروط الخسائر المساعدة لكل طريقة. علاوة على ذلك، نظرا لأن كل طريقة لها اتفاقية مختلفة بالنسبة للتنبؤات، فإننا نحدد درجات الرافية لكل طريقة وتحقيق في مخططات الترجيح القائم على الرافية للخسائر الإضافية. ندرس نهج تعليم الوزن لمعرفة الأثقال المثلى على شروط الخسارة هذه. في تحليلنا التجريبي، نقوم بفحص اتفاقية كل طريقة في KD، وأوضح فعالية نظام الترجيح في MSD، وإظهار أنه يحقق أداء أفضل من KD على أربعة مجموعات بيانات متعددة الوسائط.
تم إثبات المشفرات المستندة إلى المحولات المسبدة مسبقا مثل بيرت لتحقيق الأداء الحديث في العديد من مهام NLP العديدة. على الرغم من نجاحهم، فإن ترميز نمط بيرت كبير الحجم ولديها زمن بيانات عالية أثناء الاستدلال (خاصة في آلات وحدة المعالجة المركزية) مما يج علها غير جذابة للعديد من التطبيقات عبر الإنترنت. قدمت أساليب الضغط والتقطير مؤخرا طرقا فعالة لتخفيف هذا القصور. ومع ذلك، فإن محور هذه الأعمال كان أساسا في ترميز أحادي الأونلينغ. بدافع من النجاحات الأخيرة في التعلم عبر التحويل المتبادل في صفر تسديدة باستخدام ترميز مسببات اللغات المسبق، مثل MBERT، فإننا نقيم فعالية تقطير المعرفة (دينار كويتي) خلال مرحلة الاحتجاج وأثناء مرحلة ضبط الدقيقة على نماذج بيرت متعددة اللغات. نوضح أنه في تناقض الملاحظة السابقة في حالة التقطير أحادي الأونلينغ، في الإعدادات المتعددة اللغات، يكون التقطير أثناء الاحتجاز أكثر فعالية من التقطير أثناء ضبط الصفر عن التعلم تحويل الصفر. علاوة على ذلك، فإننا نلاحظ أن التقطير أثناء ضبط الرصيف قد يضر أداء الصفر اللغوي الصفر. أخيرا، نوضح أن تقطير نموذج أكبر (بيرت كبير) ينتج عن أقوى النموذج المقطر الذي يؤدي أفضل سواء على لغة المصدر وكذلك اللغات المستهدفة في إعدادات الطلقة الصفرية.
تجادل الدراسات الحديثة بأن تقطير المعرفة يعد إلى ترجمة الكلام (ST) باستخدام النماذج الطرفية إلى النهاية.في هذا العمل، يمكننا التحقيق في تأثير تقطير المعرفة مع SC CASCADE باستخدام نماذج الترجمة التلقائية للكلام (ASR) ونماذج الترجمة الآلية (MT).نحن نوف ر المعرفة من طراز المعلم بناء على النصوص البشرية لطراز الطلاب بناء على النسخ الخاطئة.أثبتت نتائجنا التجريبية أن تقطير المعرفة مفيد لشارع Cascade.كشف مزيد من التحقيق الذي يجمع تقطير المعرفة والضبط بشكل جيد أن الجمع بين اثنين من أزواج اللغة: الإنجليزية - الإيطالية والإسبانية الإنجليزية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا