ترغب بنشر مسار تعليمي؟ اضغط هنا

تحسين تحليل المعنويات عبر اللغات عبر شبكات لغة شرطية

Improving Cross-Lingual Sentiment Analysis via Conditional Language Adversarial Nets

341   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لقد قطع تحليل المعنويات شوطا طويلا لغات الموارد عالية الوزن بسبب توافر كورسا مشروح كبير.ومع ذلك، فإنه لا يزال يعاني من عدم وجود بيانات تدريب لغات الموارد المنخفضة.لمعالجة هذه المشكلة، نقترح شبكة الخصومة باللغة الشرطية (العشيرة)، وهي عبارة عن مبنى عصبي نهاية إلى نهائي لتحليل المشاعر المتبادلة دون إشراف عبر اللغات.تختلف العشيرة عن العمل المسبق في ذلك، حيث يسمح للتدريب الخصم بتصدر على كل من الميزات المستفادة وتنبؤ المعنويات، لزيادة التمييزي للتمثيل المستفاد في الإعداد المتبادل.تظهر النتائج التجريبية أن العشيرة تفوقت على الطرق السابقة في مجموعة بيانات مراجعة الأمازون متعددة المجالات متعددة اللغات.يتم إصدار شفرة المصدر لدينا في https://github.com/hemanthkandula/clan.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تشفير لغة متعددة اللغات المدربة مسبقا، مثل Bert متعدد اللغات و XLM-R، إظهار إمكانات كبيرة للتحويل الصفر - عبر اللغات. ومع ذلك، فإن هذه اللوائح متعددة اللغات لا تحيي بالتحديد الكلمات والعبارات عبر اللغات. على وجه الخصوص، يتطلب محاذاة التعلم في مساحة ا لتضمين متعددة اللغات عادة على مستوى الجملة أو المستوى الموازي على مستوى Word، وهي مكلفة يتم الحصول عليها لغات الموارد المنخفضة. بديل هو جعل التشفير متعددة اللغات أكثر قوة؛ عند ضبط التشفير باستخدام المهمة المصدرة للمهمة، نربط التشفير لتتسامح مع الضوضاء في المساحات التضمين السياقية بحيث لا تتماشى تمثيلات اللغات المختلفة بشكل جيد، لا يزال بإمكان النموذج تحقيق أداء جيد على الصفر بالرصاص عبر اللغات نقل. في هذا العمل، نقترح استراتيجية تعليمية لتدريب النماذج القوية عن طريق رسم الروابط بين الأمثلة الخصومة وحالات فشل النقل الصفرية عبر اللغات. نعتمد اثنين من أساليب التدريب القوية المستخدمة على نطاق واسع، والتدريب الخصوم والتنعيم العشوائي، لتدريب النموذج القوي المرغوب فيه. توضح النتائج التجريبية أن التدريب القوي يحسن نقل صفرية عبر اللغات على مهام تصنيف النص. التحسن هو أكثر أهمية في إعداد النقل المتبادل المعمم، حيث ينتمي زوج جمل المدخلات إلى لغتين مختلفة.
رؤية لغة الرؤية هي المهمة التي تتطلب وكيل للتنقل من خلال بيئة ثلاثية الأبعاد بناء على تعليمات اللغة الطبيعية. أحد التحدي الرئيسي في هذه المهمة هو التعليمات البرية مع المعلومات المرئية الحالية التي يترافق الوكيل. معظم العمل الحالي توظف اهتماما ناعما ع لى الكلمات الفردية لتحديد موقع التعليمات المطلوبة للعمل التالي. ومع ذلك، فإن كلمات مختلفة لها وظائف مختلفة في الجملة (على سبيل المثال، المعدلات ينقل السمات، الأفعال تنقل الإجراءات). يمكن أن تساعد معلومات بناء الجملة مثل التبعيات وهياكل العبارات الوكيل لتحديد أجزاء مهمة من التعليمات. وبالتالي، في هذه الورقة، نقترح وكيل التنقل الذي يستخدم معلومات بناء الجملة المستمدة من شجرة التبعية لتعزيز المحاذاة بين التعليمات والمشاهد المرئية الحالية. التجريبية، تتفوق وكيلنا على نموذج خط الأساس الذي لا يستخدم معلومات بناء الجملة على مجموعة بيانات الغرفة إلى الغرفة، خاصة في البيئة غير المرئية. بالإضافة إلى ذلك، يحقق وكيلنا الحديث الجديد في مجموعة بيانات الغرفة عبر الغرفة، والتي تحتوي على تعليمات في 3 لغات (الإنجليزية، الهندية، التيلجو). نظهر أيضا أن وكيلنا أفضل في محاذاة التعليمات مع المعلومات المرئية الحالية عبر تصورات نوعية.
نحن ندرس مشكلة استخراج وسيطة الأحداث عبر اللغات (CEAE). تهدف المهمة إلى التنبؤ بأدوار حجة من يذكر الأحداث في النص، والتي تختلف لغتها عن اللغة التي تم تدريبها على نموذج تنبؤي. أظهر العمل السابق على CEAE الفوائد المتبادلة لأشجار الاعتماد الشامل في التق اط الهياكل النحوية المشتركة للجمل عبر اللغات. على وجه الخصوص، يستغل هذا العمل وجود الاتصالات النحوية بين الكلمات في أشجار التبعية كمعرفة مرساة لنقل التمثيل تعلم عبر اللغات لنماذج CEAE (I.E.، عبر الرسوم البيانية الشبكات العصبية العلاجية - GCNS). في هذه الورقة، نقدم مصادر رواية معلومات مستقلة من اللغة للحصول على نماذج CEAE بناء على التشابه الدلالي وعلاقات التبعية الشاملة في Word Pairs بلغات مختلفة. نقترح استخدام مصادر المعلومات لإنتاج هياكل جملة مشتركة لسد الفجوة بين اللغات وتحسين الأداء المتبادل لنماذج CEAE. يتم إجراء تجارب واسعة مع اللغة العربية والصينية والإنجليزية لإظهار فعالية الطريقة المقترحة للحصول على CEAE.
نحن ندرس تصنيف التفضيل المقارن (CPC) الذي يهدف إلى التنبؤ بما إذا كان مقارنة الأفضلية موجودة بين كيانين في عقوبة معينة، وإذا كان الأمر كذلك، فهذا، يفضل الكيان على الآخر. يمكن أن نماذج CPC عالية الجودة تستفيد بشكل كبير تطبيقات مثل السؤال المقارن الرد التوصية القائمة على المراجعة. من بين الأساليب الحالية، تعاني أساليب التعلم غير العميقة من أداء أدنى. الرسم البياني لحديث الحديث في الشبكة العصبية المستندة إلى الشبكة (ما، و 2020) يعتبر فقط المعلومات النحوية مع تجاهل العلاقات الدلالية الحاسمة والمشاعر إلى الكيانات المقارنة. نقترح أن نقترح تحليل المعنويات الشبكة المقارنة المعززة (Saecon) الذي يحسن دقة الحزب الشيوعي الصيني مع محلل معنويات يتعلم المشاعر إلى الكيانات الفردية عبر نقل المعرفة التكيفية المجال. يجري التجارب على مجموعة بيانات Compsent-19 (Panchenko et al.، 2019) تحسنا كبيرا على درجات F1 على أفضل طرق CPC الحالية.
نجحت شبكات الخصومة الإندنية (GANS) في تحفيز Adgeddings Word عبر اللغات - خرائط من الكلمات المتطابقة عبر اللغات - دون إشراف.على الرغم من هذه النجاحات، فإن أداء GANS الخاص بالحالة الصعبة للغات البعيدة لا يزال غير مرض.تم تفسير هذه القيود من قبل قوات الق يم "افتراض غير صحيح" أن المصدر والمساحات المستهدفة تضم ذات الصلة من خلال تعيين خطي واحد ويقبل Isomorphic تقريبا.ونحن نفترض بدلا من ذلك، خاصة عبر اللغات البعيدة، فإن التعيين هو مجرد خطي بقطعة حكيمة، ويقترح طريقة التعلم المتعددة الخصوم.هذه الطريقة الرواية تحفز القاموس البذور عبر اللغات من خلال تعيينات متعددة، كل منها مستحث لتناسب التعيين مقابل مساحة فرعية واحدة.تجاربنا على تحريض المعجم الثنائي الثنائي الثنائي البغي وتصنيف المستندات عبر اللغات تظهر أن هذه الطريقة تعمل على تحسين الأداء على أساليب رسم الخرائط الفردية السابقة، خاصة للغات البعيدة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا