ترغب بنشر مسار تعليمي؟ اضغط هنا

الفرح العالمي مجموعة البيانات والنتائج لتصنيف العواطف عبر اللغات

Universal Joy A Data Set and Results for Classifying Emotions Across Languages

191   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

في حين أن العواطف جوانب عالمية لعلم النفس البشري، يتم التعبير عنها بشكل مختلف عبر لغات وثقافات مختلفة.نقدم مجموعة بيانات جديدة من أكثر من 530K منشورات عامة من الفيسبوك المجففة في 18 لغة، والتي تحمل تصنيفها بخمس عواطف مختلفة.باستخدام Asbeddings Bert متعدد اللغات، نوضح أن العواطف يمكن استنتاجها بشكل موثوق في الداخل وبين اللغات.يعد التعلم الصفرية النتائج الواعدة لغات الموارد المنخفضة.بعد النظريات المعمارية للعواطف الأساسية، نقدم تحليلا مفصلا لإمكانيات وحدود تصنيف العاطفة عبر اللغات.نجد أن التشابه الهيكلية والنظامي بين اللغات يسهل التعلم عبر اللغات، بالإضافة إلى التنوع اللغوي لبيانات التدريب.تشير نتائجنا إلى أن هناك القواسم المشتركة وراء التعبير عن العاطفة بلغات مختلفة.نطلق علنا البيانات المجهولية للبحث في المستقبل.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

كيف تشرح بيل غيتس إلى الألمانية؟يرتبط بتأسيس شركة في الولايات المتحدة، لذلك ربما يمكن للمؤسس الألماني كارل بنز أن يقف في البوابات في تلك السياقات.يسمى هذا النوع من الترجمة التكيف في مجتمع الترجمة.حتى الآن، لم تتم هذه المهمة بشكل حسابي.يمكن استخدام ال تكيف التلقائي في معالجة اللغة الطبيعية للترجمة الآلية وغير مباشرة لتوليد سؤالا جديدا يرد على مجموعات البيانات والتعليم.نقترح طريقتان تلقائيا ومقارنتها عن نتائج بشرية لهذه المهمة الرواية NLP الرواية.أولا، تتكيف قاعدة المعرفة المهيكلة الكيانات المسماة باستخدام خصائصها المشتركة.ثانيا، أساليب تعيينات التضمين الحسابية والمتعاملة التعاملية تحدد المرشحين أفضل، ولكن على حساب الميزات القابلة للتفسير.نقيم أساليبنا من خلال مجموعة بيانات جديدة من التكيف البشري.
تعتمد أنظمة متعددة اللغات متعددة اللغات على المفردات المشتركة التي تغطي جميع اللغات التي تغطي بما فيه الكفاية. تحقيقا لهذه الغاية، فإن النهج البسيط والمستعمل بشكل متكرر يستفيد من مفهليات الكلمات الفرعية التي تم إنشاؤها بشكل مشترك على عدة لغات. نحن نف ترض أن مثل هذه المفردات هي فرعية نفسها بسبب الإيجابيات الخاطئة (الكلمات الفرعية المماثلة مع معاني مختلفة عبر اللغات) والسلبيات الخاطئة (كلمات فرعية مختلفة مع معاني مماثلة). لمعالجة هذه المشكلات، نقترح رسم الخرائط عن طريق الكلمات الفرعية ومثبتة عبر اللغات (SMALA)، وهي طريقة لبناء مخصصات الكلمات الفرعية ثنائية اللغة. تقوم SMALA باستخراج محاذاة الكلمات الفرعية باستخدام تقنية رسم الخرائط غير المزودة بعملية رسم الخرائط واستخدامها لإنشاء مراسي عبر اللغات بناء على أوجه تشابه الكلمات الفرعية. نوضح فوائد SMALA للاستدلال اللغوي للغة الطبيعية المتبادلة (XNLI)، حيث يحسن تحويل صفرية إلى لغة غير مرئية دون بيانات مهمة، ولكن فقط من خلال تقاسم تضييق الكلمات الفرعية. علاوة على ذلك، في الترجمة الآلية العصبية، نوضح أن مفردات الكلمة الفرعية المشتركة التي تم الحصول عليها مع Smala تؤدي إلى أعلى درجات بلو على أحكام تحتوي على العديد من الإيجابيات الخاطئة والسلبيات الخاطئة.
لوحظت نماذج الترجمة الآلية العصبية (NMT) لإنتاج ترجمات سيئة عندما يكون هناك عدد قليل من الجمل / لا توجد جمل متوازية لتدريب النماذج. في حالة عدم وجود بيانات متوازية، تحولت عدة طرق إلى استخدام الصور لتعلم الترجمات. نظرا لأن صور الكلمات، على سبيل المثال ، قد لا تتغير الحصان عبر اللغات، يمكن تحديد الترجمات عبر الصور المرتبطة بالكلمات بلغات مختلفة تحتوي على درجة عالية من التشابه البصري. ومع ذلك، تم عرض ترجمة عبر الصور تتحسن عند نماذج النص فقط بشكل هامشي. لفهم أفضل عندما تكون الصور مفيدة للترجمة، ندرس صورة ترجمتها للكلمات، والتي نحددها كترجمة الكلمات عبر الصور، من خلال قياس أوجه التشابه بين المعلومات بين التصنيفات للكلمات التي ترجمات من بعضها البعض. نجد أن صور الكلمات ليست دائما ثابتة عبر اللغات، وأن أزواج اللغة ذات الثقافة المشتركة، والتي تعني إما عائلة لغة مشتركة أو عرقية أو دين، قد تحسنت إمكانية تحسن الصور (أي صور مشابهة للكلمات المماثلة) يحادثون، بغض النظر عن قربهم الجغرافي. بالإضافة إلى ذلك، تمشيا مع الأعمال السابقة التي تظهر الصور تساعد المزيد في ترجمة الكلمات الملموسة، وجدنا أن الكلمات الملموسة قد تحسنت إمكانية الحصول على صورة حسب الاقتضاء.
في هذه الورقة، نضع أنفسنا في سيناريو التصنيف الذي لا يمكن الوصول إليه الطبقات المستهدفة ونوع البيانات أثناء التدريب.نستخدم نهج التعلم التلوي لتحديد ما إذا كانت المعلومات التي تم تدريبها على التلوي من بيانات الشبكة الاجتماعية المشتركة مع ملصقات عاطفة من الرعازة يمكن أن تحقق أداء تنافسي على الرسائل المسمى بفئات العاطفة المختلفة.نستفيد القليل من اللقطة التعلم لتتناسب مع سيناريو التصنيف والنظر في التعلم التعلم القائم على التعلم المتري عن طريق إعداد الشبكات النموذجية النموذجية مع تشفير محول، مدربة في أزياء بيئية.يثبت هذا النهج فعالا لالتقاط المعلومات المعوضة من مجموعة من الوسم العاطفي المصدر للتنبؤ علامات عاطفية غير مرئية مسبقا.على الرغم من أن تحويل نوع البيانات يؤدي إلى انخفاض الأداء المتوقع، فإن نهجنا التعلم التلوي يحقق نتائج لائقة عند مقارنته بالآخر تحت الإشراف بالكامل.
تعد أنظمة معالجة اللغة الطبيعية (NLP) في قلب العديد من أنظمة صنع القرار الآلي الحرجة التي تجعل توصيات حاسمة حول عالمنا في المستقبل.تم دراسة التحيز بين الجنسين في NLP جيدا باللغة الإنجليزية، لكنها كانت أقل دراستها بلغات أخرى.في هذه الورقة، تضم فريقا ب ينهم متحدثون 9 لغات - الصينية والإسبانية والإنجليزية والعربية والألمانية والفرنسية والفرصي والأوردو وولف - تقارير وتحليل قياسات التحيز بين الجنسين في ولاية ويكيبيديا كورسيا لهذه اللغات 9 لغات 9 لغات 9 لغات 9 لغات 9 لغات هذه.نقوم بتطوير ملحقات لحسابات متر راي حساسية على مستوى المهنة والجنس على مستوى كوربوس المصممة في الأصل للغة الإنجليزية وتطبيقها على 8 لغات أخرى، بما في ذلك اللغات التي لديها أسماء جنسانية من النوع الاجتماعي بما في ذلك كلمات المهنة الأنثوية والمذكر والمحايدة المختلفة.نناقش العمل في المستقبل من شأنه أن يستفيد بشكل كبير من منظور اللغويات الحاسوبية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا