تصف هذه الورقة أن الأنظمة المقدمة إلى المهمة المشتركة Wat 2021 Multiindicmt بواسطة فريق IITP-MT.نحن نقدم اثنين من أنظمة الترجمة الآلية العصبية متعددة اللغات (NMT) (Inster-to-English والإنجليزية إلى MEDER).ننهي جميع بيانات MED وتخلق المفردات الفرعية التي يتم مشاركتها بين جميع لغات ISS.نحن نستخدم نهج الترجمة الخلفي لتوليد البيانات الاصطناعية التي يتم إلحاقها بالتوازي Corpus وتستخدم لتدريب نماذجنا.يتم تقييم النماذج باستخدام درجات Bleu و Libes و AMFM مع نموذج MEDER-To-To-English يحقق 40.08 Bleu للزوج الهندي والإنجليزي ونموذج اللغة الإنجليزية إلى MERS لتحقيق 34.48 بلو للزوج باللغة الإنجليزية الهندية.ومع ذلك، نلاحظ أن مفردات الكلمة الفرعية المشتركة لا تساعد النموذج الإنجليزي إلى التروس في وقت الجيل، مما أدى إلى إنتاج ترجمات ذات نوعية رديئة للتاميل والتيلجو وميلايالام إلى أزواج باللغة الإنجليزية مع درجة بلو 8.51 و 6.25 و 3.79على التوالى.
This paper describes the systems submitted to WAT 2021 MultiIndicMT shared task by IITP-MT team. We submit two multilingual Neural Machine Translation (NMT) systems (Indic-to-English and English-to-Indic). We romanize all Indic data and create subword vocabulary which is shared between all Indic languages. We use back-translation approach to generate synthetic data which is appended to parallel corpus and used to train our models. The models are evaluated using BLEU, RIBES and AMFM scores with Indic-to-English model achieving 40.08 BLEU for Hindi-English pair and English-to-Indic model achieving 34.48 BLEU for English-Hindi pair. However, we observe that the shared romanized subword vocabulary is not helping English-to-Indic model at the time of generation, leading it to produce poor quality translations for Tamil, Telugu and Malayalam to English pairs with BLEU score of 8.51, 6.25 and 3.79 respectively.
المراجع المستخدمة
https://aclanthology.org/
أصبح خلط التعليمات البرمجية طريقة متحركة للاتصال بين مكبرات الصوت متعددة اللغات. تتم كتابة معظم محتوى وسائل التواصل الاجتماعي للمجتمعات متعددة اللغات في النص المختلط من التعليمات البرمجية. ومع ذلك، فإن معظم أنظمة الترجمة الحالية إهمال تحويل النصوص ال
عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد
نقترح مخطط تكييف المفردات المباشر لتوسيع نطاق القدرة اللغوية لنماذج الترجمة متعددة اللغات، مما يمهد الطريق نحو التعلم المستمر الفعال للترجمة الآلية متعددة اللغات.نهجنا مناسب لمجموعات البيانات واسعة النطاق، ينطبق على اللغات البعيدة مع البرامج النصية غ
تعاني ترجمة الآلات العصبية التي تعتمد على نص ثنائي اللغة مع بيانات تدريبية محدودة من التنوع المعجمي، والتي تقلل من دقة ترجمة الكلمات النادرة وتقلص من تعميم نظام الترجمة.في هذا العمل، نستخدم التسميات التوضيحية المتعددة من مجموعة بيانات متعددة 30 ألفا
الترجمة الآلية تؤدي الترجمة الآلية من لغة طبيعية إلى أخرى. تكمن ترجمة الآلات العصبية بمهارة أحدث في الترجمة الآلية، لكنها تتطلب بيانات تدريبية كافية، وهي مشكلة شديدة لترجمة أزواج لغة الموارد المنخفضة. يتم تقديم مفهوم Multimodal في الترجمة الآلية العص