نقترح مخطط تكييف المفردات المباشر لتوسيع نطاق القدرة اللغوية لنماذج الترجمة متعددة اللغات، مما يمهد الطريق نحو التعلم المستمر الفعال للترجمة الآلية متعددة اللغات.نهجنا مناسب لمجموعات البيانات واسعة النطاق، ينطبق على اللغات البعيدة مع البرامج النصية غير المرئية، وتحتل التدهور البسيط فقط على أداء الترجمة لأزواج اللغة الأصلية ويوفر أداء تنافسي حتى في الحالة التي نمتلك فيها بيانات أحادية الألوان فقط للغات الجديدة.
We propose a straightforward vocabulary adaptation scheme to extend the language capacity of multilingual machine translation models, paving the way towards efficient continual learning for multilingual machine translation. Our approach is suitable for large-scale datasets, applies to distant languages with unseen scripts, incurs only minor degradation on the translation performance for the original language pairs and provides competitive performance even in the case where we only possess monolingual data for the new languages.
المراجع المستخدمة
https://aclanthology.org/
نماذج الترجمة الآلية العصبية (NMT) هي مدفوعة بالبيانات وتتطلب كوربوس تدريب واسع النطاق. في التطبيقات العملية، عادة ما يتم تدريب نماذج NMT على مجال مجال عام ثم يتم ضبطه بشكل جيد من خلال التدريب المستمر على Corpus في المجال. ومع ذلك، فإن هذا يحمل خطر ا
عنصر رئيسي واحد من الترجمة الآلية العصبية هو استخدام مجموعات البيانات الكبيرة من المجالات والموارد المختلفة (E.G. Europarl، TED محادثات).تحتوي مجموعات البيانات هذه على مستندات مترجمة من قبل المترجمين المحترفين باستخدام أنماط الترجمة المختلفة ولكن ثاب
تقترح هذه الورقة تقنية لإضافة مصدر جديد أو لغة مستهدفة إلى نموذج NMT متعدد اللغات الحالي دون إعادة تدريبه في المجموعة الأولية للغات.وهي تتألف في استبدال المفردات المشتركة مع المفردات الصغيرة الخاصة باللغة ولقلها تضمين المدينات الجديدة على البيانات ال
عادة ما يتم تكليف الترجمة الآلية العصبية متعددة الموارد (MNMT) بتحسين أداء الترجمة على أزواج لغة واحدة أو أكثر بمساعدة أزواج لغة الموارد عالية الموارد.في هذه الورقة، نقترح اثنين من المناهج البحث البسيطة القائمة على البحث - طلب بيانات التدريب المتعدد
تصف هذه الورقة أن الأنظمة المقدمة إلى المهمة المشتركة Wat 2021 Multiindicmt بواسطة فريق IITP-MT.نحن نقدم اثنين من أنظمة الترجمة الآلية العصبية متعددة اللغات (NMT) (Inster-to-English والإنجليزية إلى MEDER).ننهي جميع بيانات MED وتخلق المفردات الفرعية ا