ﻻ يوجد ملخص باللغة العربية
It is shown that the ensemble ${p (alpha),|alpha>|alpha^*>}$ where $p (alpha)$ is a Gaussian distribution of finite variance and $| alpha>$ is a coherent state can be better discriminated with an entangled measurement than with any local strategy supplemented by classical communication. Although this ensemble consists of products of quasi-classical states, it exhibits some quantum nonlocality. This remarkable effect is demonstrated experimentally by implementing the optimal local strategy together with a joint nonlocal strategy that yields a higher fidelity.
In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $mathbb{C}^dotimesmathbb{C}^dotimesmathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ or
We demonstrate an unconditional high-fidelity teleporter capable of preserving the broadband entanglement in an optical squeezed state. In particular, we teleport a squeezed state of light and observe $-0.8 pm 0.2$dB of squeezing in the teleported (o
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Be
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheles
Entanglement is widely believed to lie at the heart of the advantages offered by a quantum computer. This belief is supported by the discovery that a noiseless (pure) state quantum computer must generate a large amount of entanglement in order to off