ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Quantum Nonlocality without Entanglement in Multipartite Quantum Systems

484   0   0.0 ( 0 )
 نشر من قبل Guojing Tian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $mathbb{C}^dotimesmathbb{C}^dotimesmathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ orthogonal product states, which is one order of magnitude less than the number of basis states $d^3$. Secondly, we give the explicit form of strongly nonlocal orthogonal product basis in $mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3otimes mathbb{C}^3$ quantum system, where four is the largest known number of subsystems in which there exists strong quantum nonlocality up to now. Both the two results positively answer the open problems in [Halder, textit{et al.}, PRL, 122, 040403 (2019)], that is, there do exist and even smaller number of quantum states can demonstrate strong quantum nonlocality without entanglement.



قيم البحث

اقرأ أيضاً

108 - J. Niset , , N.J. Cerf 2006
We present a generic method to construct a product basis exhibiting Nonlocality Without Entanglement with $n$ parties each holding a system of dimension at least $n-1$. This basis is generated via a quantum circuit made of control-Discrete Fourier Tr ansform gates acting on the computational basis. The simplicity of our quantum circuit allows for an intuitive understanding of this new type of nonlocality. We also show how this circuit can be used to construct Unextendible Product Bases and their associated Bound Entangled States. To our knowledge, this is the first method which, given a general Hilbert space $bigotimes_{i=1}^n {cal H}_{d_i}$ with $d_ile n-1$, makes it possible to construct (i) a basis exhibiting Nonlocality Without Entanglement, (ii) an Unextendible Product Basis, and (iii) a Bound Entangled state.
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining question is whether the states can reveal strong quantum nonlocality. Here we present a general definition of strong quantum nonlocality based on the local indistinguishability. Then, in $2 otimes 2 otimes 2$ quantum system, we show that a set of orthogonal entangled states is locally reducible but locally indistinguishable in all bipartitions, which means the states have strong nonlocality. Furthermore, we generalize the result in N-qubit quantum system, where $Ngeqslant 3$. Finally, we also construct a class of strong nonlocality of entangled states in $dotimes dotimes cdots otimes d, dgeqslant 3$. Our results extend the phenomenon of strong nonlocality for entangled states.
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent operations. The results are also generalized to qudit case. Furthermore, rigorous relations between the quantum coherence of a single-partite state and the genuine multipartite quantum entanglement, as well as the genuine three-qubit quantum nonlocality are established.
The celebrated Einstein-Podolsky-Rosen quantum steering has a complex structure in the multipartite scenario. We show that a naively defined criterion for multipartite steering allows, like in Bell nonlocality, for a contradictory effect whereby loca l operations could create steering seemingly from scratch. Nevertheless, neither in steering nor in Bell nonlocality has this effect been experimentally confirmed. Operational consistency is reestablished by presenting a suitable redefinition: there is a subtle form of steering already present at the start, and it is only exposed -- as opposed to created -- by the local operations. We devise protocols that, remarkably, are able to reveal, in seemingly unsteerable systems, not only steering, but also Bell nonlocality. Moreover, we find concrete cases where entanglement certification does not coincide with steering. A causal analysis reveals the crux of the issue to lie in hidden signaling. Finally, we implement one of the protocols with three photonic qubits deterministically, providing the experimental demonstration of both exposure and super-exposure of quantum nonlocality.
We consider Bell tests in which the distant observers can perform local filtering before testing a Bell inequality. Notably, in this setup, certain entangled states admitting a local hidden variable model in the standard Bell scenario can nevertheles s violate a Bell inequality after filtering, displaying so-called hidden nonlocality. Here we ask whether all entangled states can violate a Bell inequality after well-chosen local filtering. We answer this question in the negative by showing that there exist entangled states without hidden nonlocality. Specifically, we prove that some two-qubit Werner states still admit a local hidden variable model after any possible local filtering on a single copy of the state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا