ﻻ يوجد ملخص باللغة العربية
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
This work develops analytic methods to quantitatively demarcate quantum reality from its subset of classical phenomenon, as well as from the superset of general probabilistic theories. Regarding quantum nonlocality, we discuss how to determine the qu
Contextuality is a non-classical behaviour that can be exhibited by quantum systems. It is increasingly studied for its relationship to quantum-over-classical advantages in informatic tasks. To date, it has largely been studied in discrete variable s
Everyday experience supports the existence of physical properties independent of observation in strong contrast to the predictions of quantum theory. In particular, existence of physical properties that are independent of the measurement context is p
The existence of incompatible measurements is often believed to be a feature of quantum theory which signals its inconsistency with any classical worldview. To prove the failure of classicality in the sense of Kochen-Specker noncontextuality, one doe
In this paper, we generalize the concept of strong quantum nonlocality from two aspects. Firstly in $mathbb{C}^dotimesmathbb{C}^dotimesmathbb{C}^d$ quantum system, we present a construction of strongly nonlocal quantum states containing $6(d-1)^2$ or