ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental quantum computing without entanglement

198   0   0.0 ( 0 )
 نشر من قبل Ben Lanyon
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement is widely believed to lie at the heart of the advantages offered by a quantum computer. This belief is supported by the discovery that a noiseless (pure) state quantum computer must generate a large amount of entanglement in order to offer any speed up over a classical computer. However, deterministic quantum computation with one pure qubit (DQC1), which employs noisy (mixed) states, is an efficient model that generates at most a marginal amount of entanglement. Although this model cannot implement any arbitrary algorithm it can efficiently solve a range of problems of significant importance to the scientific community. Here we experimentally implement a first-order case of a key DQC1 algorithm and explicitly characterise the non-classical correlations generated. Our results show that while there is no entanglement the algorithm does give rise to other non-classical correlations, which we quantify using the quantum discord - a stronger measure of non-classical correlations that includes entanglement as a subset. Our results suggest that discord could replace entanglement as a necessary resource for a quantum computational speed-up. Furthermore, DQC1 is far less resource intensive than universal quantum computing and our implementation in a scalable architecture highlights the model as a practical short-term goal.



قيم البحث

اقرأ أيضاً

Simply and reliably detecting and quantifying entanglement outside laboratory conditions will be essential for future quantum information technologies. Here we address this issue by proposing a method for generating expressions which can perform this task between two parties who do not share a common reference frame. These reference frame independent expressions only require simple local measurements, which allows us to experimentally test them using an off-the-shelf entangled photon source. We show that the values of these expressions provide bounds on the concurrence of the state, and demonstrate experimentally that these bounds are more reliable than values obtained from state tomography since characterizing experimental errors is easier in our setting. Furthermore, we apply this idea to other quantities, such as the Renyi and von Neumann entropies, which are also more reliably calculated directly from the raw data than from a tomographically reconstructed state. This highlights the relevance of our approach for practical quantum information applications that require entanglement.
110 - John Preskill 2012
Quantum information science explores the frontier of highly complex quantum states, the entanglement frontier. This study is motivated by the observation (widely believed but unproven) that classical systems cannot simulate highly entangled quantum s ystems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world. One way to achieve such quantum supremacy would be to run an algorithm on a quantum computer which solves a problem with a super-polynomial speedup relative to classical computers, but there may be other ways that can be achieved sooner, such as simulating exotic quantum states of strongly correlated matter. To operate a large scale quantum computer reliably we will need to overcome the debilitating effects of decoherence, which might be done using standard quantum hardware protected by quantum error-correcting codes, or by exploiting the nonabelian quantum statistics of anyons realized in solid state systems, or by combining both methods. Only by challenging the entanglement frontier will we learn whether Nature provides extravagant resources far beyond what the classical world would allow.
It is shown that the ensemble ${p (alpha),|alpha>|alpha^*>}$ where $p (alpha)$ is a Gaussian distribution of finite variance and $| alpha>$ is a coherent state can be better discriminated with an entangled measurement than with any local strategy sup plemented by classical communication. Although this ensemble consists of products of quasi-classical states, it exhibits some quantum nonlocality. This remarkable effect is demonstrated experimentally by implementing the optimal local strategy together with a joint nonlocal strategy that yields a higher fidelity.
53 - Hatim Salih 2016
We combine the eyebrow-raising quantum phenomena of erasure and counterfactuality for the first time, proposing a simple yet unusual quantum eraser: A distant Bob can decide to erase which-path information from Alices photon, dramatically restoring i nterference, without previously-shared entanglement, and without Alices photon ever leaving her lab.
Quantum channels, which break entanglement, incompatibility, or nonlocality, are not useful for entanglement-based, one-sided device-independent, or device-independent quantum information processing, respectively. Here, we show that such breaking cha nnels are related to certain temporal quantum correlations, i.e., temporal separability, channel unsteerability, temporal unsteerability, and macrorealism. More specifically, we first define the steerability-breaking channel, which is conceptually similar to the entanglement and nonlocality-breaking channels and prove that it is identical to the incompatibility-breaking channel. Similar to the hierarchy relations of the temporal and spatial quantum correlations, the hierarchy of non-breaking channels is discussed. We then introduce the concept of the channels which break temporal correlations, explain how they are related to the standard breaking channels, and prove the following results: (1) A certain measure of temporal nonseparability can be used to quantify a non-entanglement-breaking channel in the sense that the measure is a memory monotone under the framework of the resource theory of the quantum memory. (2) A non-steerability-breaking channel can be certified with channel steering because the steerability-breaking channel is equivalent to the incompatibility-breaking channel. (3) The temporal steerability and non-macrorealism can, respectively, distinguish the steerability-breaking and the nonlocality-breaking unital channel from their corresponding non-breaking channels. Finally, a two-dimensional depolarizing channel is experimentally implemented as a proof-of-principle example to compare the temporal quantum correlations with non-breaking channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا