ﻻ يوجد ملخص باللغة العربية
Discrete tomography is a well-established method to investigate finite point sets, in particular finite subsets of periodic systems. Here, we start to develop an efficient approach for the treatment of finite subsets of mathematical quasicrystals. To this end, the class of cyclotomic model sets is introduced, and the corresponding consistency, reconstruction and uniqueness problems of the discrete tomography of these sets are discussed.
We show that the asymptotic dimension of a geodesic space that is homeomorphic to a subset in the plane is at most three. In particular, the asymptotic dimension of the plane and any planar graph is at most three.
The coincidence problem for planar patterns with $N$-fold symmetry is considered. For the N-fold symmetric module with $N<46$, all isometries of the plane are classified that result in coincidences of finite index. This is done by reformulating the p
We consider the problem of distinguishing convex subsets of $n$-cyclotomic model sets $varLambda$ by (discrete parallel) X-rays in prescribed $varLambda$-directions. In this context, a `magic number $m_{varLambda}$ has the property that any two conve
A finite subset of a Euclidean space is called an $s$-distance set if there exist exactly $s$ values of the Euclidean distances between two distinct points in the set. In this paper, we prove that the maximum cardinality among all 5-distance sets in
We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the un