We show that the asymptotic dimension of a geodesic space that is homeomorphic to a subset in the plane is at most three. In particular, the asymptotic dimension of the plane and any planar graph is at most three.
Let $X$ be a geodesic metric space with $H_1(X)$ uniformly generated. If $X$ has asymptotic dimension one then $X$ is quasi-isometric to an unbounded tree. As a corollary, we show that the asymptotic dimension of the curve graph of a compact, oriente
d surface with genus $g ge 2$ and one boundary component is at least two.
A pair of non-adjacent edges is said to be separated in a circular ordering of vertices, if the endpoints of the two edges do not alternate in the ordering. The circular separation dimension of a graph $G$, denoted by $pi^circ(G)$, is the minimum num
ber of circular orderings of the vertices of $G$ such that every pair of non-adjacent edges is separated in at least one of the circular orderings. This notion is introduced by Loeb and West in their recent paper. In this article, we consider two subclasses of planar graphs, namely $2$-outerplanar graphs and series-parallel graphs. A $2$-outerplanar graph has a planar embedding such that the subgraph obtained by removal of the vertices of the exterior face is outerplanar. We prove that if $G$ is $2$-outerplanar then $pi^circ(G) = 2$. We also prove that if $G$ is a series-parallel graph then $pi^circ(G) leq 2$.
Discrete tomography is a well-established method to investigate finite point sets, in particular finite subsets of periodic systems. Here, we start to develop an efficient approach for the treatment of finite subsets of mathematical quasicrystals. To
this end, the class of cyclotomic model sets is introduced, and the corresponding consistency, reconstruction and uniqueness problems of the discrete tomography of these sets are discussed.
The asymptotic dimension is an invariant of metric spaces introduced by Gromov in the context of geometric group theory. When restricted to graphs and their shortest paths metric, the asymptotic dimension can be seen as a large scale version of weak
diameter colorings (also known as weak diameter network decompositions), i.e. colorings in which each monochromatic component has small weak diameter. In this paper, we prove that for any $p$, the class of graphs excluding $K_{3,p}$ as a minor has asymptotic dimension at most 2. This implies that the class of all graphs embeddable on any fixed surface (and in particular the class of planar graphs) has asymptotic dimension 2, which gives a positive answer to a recent question of Fujiwara and Papasoglu. Our result extends from graphs to Riemannian surfaces. We also prove that graphs of bounded pathwidth have asymptotic dimension at most 1 and graphs of bounded layered pathwidth have asymptotic dimension at most 2. We give some applications of our techniques to graph classes defined in a topological or geometrical way, and to graph classes of polynomial growth. Finally we prove that the class of bounded degree graphs from any fixed proper minor-closed class has asymptotic dimension at most 2. This can be seen as a large scale generalization of the result that bounded degree graphs from any fixed proper minor-closed class are 3-colorable with monochromatic components of bounded size. This also implies that (infinite) Cayley graphs avoiding some minor have asymptotic dimension at most 2, which solves a problem raised by Ostrovskii and Rosenthal.
We investigate the problem of drawing graphs in 2D and 3D such that their edges (or only their vertices) can be covered by few lines or planes. We insist on straight-line edges and crossing-free drawings. This problem has many connections to other ch
allenging graph-drawing problems such as small-area or small-volume drawings, layered or track drawings, and drawing graphs with low visual complexity. While some facts about our problem are implicit in previous work, this is the first treatment of the problem in its full generality. Our contribution is as follows. We show lower and upper bounds for the numbers of lines and planes needed for covering drawings of graphs in certain graph classes. In some cases our bounds are asymptotically tight; in some cases we are able to determine exact values. We relate our parameters to standard combinatorial characteristics of graphs (such as the chromatic number, treewidth, maximum degree, or arboricity) and to parameters that have been studied in graph drawing (such as the track number or the number of segments appearing in a drawing). We pay special attention to planar graphs. For example, we show that there are planar graphs that can be drawn in 3-space on a lot fewer lines than in the plane.