ﻻ يوجد ملخص باللغة العربية
A finite subset of a Euclidean space is called an $s$-distance set if there exist exactly $s$ values of the Euclidean distances between two distinct points in the set. In this paper, we prove that the maximum cardinality among all 5-distance sets in $mathbb{R}^3$ is 20, and every $5$-distance set in $mathbb{R}^3$ with $20$ points is similar to the vertex set of a regular dodecahedron.
The set of points in a metric space is called an $s$-distance set if pairwise distances between these points admit only $s$ distinct values. Two-distance spherical sets with the set of scalar products ${alpha, -alpha}$, $alphain[0,1)$, are called equ
We prove that if the set of unordered pairs of real numbers is colored by finitely many colors, there is a set of reals homeomorphic to the rationals whose pairs have at most two colors. Our proof uses large cardinals and it verifies a conjecture of
We present a proof of the compositional shuffle conjecture, which generalizes the famous shuffle conjecture for the character of the diagonal coinvariant algebra. We first formulate the combinatorial side of the conjecture in terms of certain operato
A subset $X$ in the $d$-dimensional Euclidean space is called a $k$-distance set if there are exactly $k$ distances between two distinct points in $X$. Einhorn and Schoenberg conjectured that the vertices of the regular icosahedron is the only 12-poi
In this paper we introduce the concept of clique disjoint edge sets in graphs. Then, for a graph $G$, we define the invariant $eta(G)$ as the maximum size of a clique disjoint edge set in $G$. We show that the regularity of the binomial edge ideal of