ﻻ يوجد ملخص باللغة العربية
We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way.
Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit e
This paper addresses the problem of finding minimum forcing sets in origami. The origami material folds flat along straight lines called creases that can be labeled as mountains or valleys. A forcing set is a subset of creases that force all the othe
In this paper, we will show methods to interpret some rigid origami with higher degree vertices as the limit case of structures with degree-4 supplementary angle vertices. The interpretation is based on separating each crease into two parallel crease
Inspired by the classical Riemannian systolic inequality of Gromov we present a combinatorial analogue providing a lower bound on the number of vertices of a simplicial complex in terms of its edge-path systole. Similarly to the Riemannian case, wher
Define the augmented square twist origami crease pattern to be the classic square twist crease pattern with one crease added along a diagonal of the twisted square. In this paper we fully describe the rigid foldability of this new crease pattern. Spe