ﻻ يوجد ملخص باللغة العربية
The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation. From its solution (the probability density function), the generating function (GF) for the corresponding probability distribution is derived. We consider the case when the GF reduces to that of the negative binomial distribution (NBD), if the fractional derivative is replaced to the ordinary one. Formulas of the factorial moment and the $H_j$ moment are derived from the GF. The $H_j$ moment derived from the GF of the NBD decreases monotonously as the rank j increases. However, the $H_j$ moment derived in our approach oscillates, which is contrasted with the case of the NBD. Calculated $H_j$ moments are compared with those given from the data in $pbar{p}$ collisions and in $e^+e^-$ collisions.
Fractional derivative in time variable is introduced into the Fokker-Planck equation of a population growth model. Its solution, the KNO scaling function, is transformed into the generating function for the multiplicity distribution. Formulas of the
We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavy-tailed increments, and the transition probability density of the noise gener
In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using t
This papers deals with overall phase transformation kinetics. The Fokker-Planck type equation is derived from the generalized nucleation theory proposed by Binder and Stauffer. Existence of the steady state solution is shown by a method based on the
We derive the stochastic description of a massless, interacting scalar field in de Sitter space directly from the quantum theory. This is done by showing that the density matrix for the effective theory of the long wavelength fluctuations of the fiel