ﻻ يوجد ملخص باللغة العربية
We derive the stochastic description of a massless, interacting scalar field in de Sitter space directly from the quantum theory. This is done by showing that the density matrix for the effective theory of the long wavelength fluctuations of the field obeys a quantum version of the Fokker-Planck equation. This equation has a simple connection with the standard Fokker-Planck equation of the classical stochastic theory, which can be generalised to any order in perturbation theory. We illustrate this formalism in detail for the theory of a massless scalar field with a quartic interaction.
Stochastic Inflation is an important framework for understanding the physics of de Sitter space and the phenomenology of inflation. In the leading approximation, this approach results in a Fokker-Planck equation that calculates the probability distri
Hilltop inflation models are often described by potentials $V = V_{0}(1-{phi^{n}over m^{n}}+...)$. The omitted terms indicated by ellipsis do not affect inflation for $m lesssim 1$, but the most popular models with $n =2$ and $4$ for $m lesssim 1$ ar
Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general exp
We propose a new technique to study fast transitions during inflation, by studying the dynamics of quantum quenches in an $O(N)$ scalar field theory in de Sitter spacetime. We compute the time evolution of the system using a non-perturbative large-$N
Classical scale invariance represents a promising framework for model building beyond the Standard Model. However, once coupled to gravity, any scale-invariant microscopic model requires an explanation for the origin of the Planck mass. In this paper