ﻻ يوجد ملخص باللغة العربية
This papers deals with overall phase transformation kinetics. The Fokker-Planck type equation is derived from the generalized nucleation theory proposed by Binder and Stauffer. Existence of the steady state solution is shown by a method based on the mean value theorem of differential calculus. From the analysis of asymptotic behavior of the Fokker-Planck type equation it is known that the number of clusters having the critical size increases with time in the case of constant driving force. On the basis of the present study on overall phase transformation kinetics a simple method for analyzing experimental phase transformation curves was proposed.
The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation. From its solution (the pr
We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavy-tailed increments, and the transition probability density of the noise gener
In this paper we statistically analyze the Fokker-Planck (FP) equation of Schramm-Loewner evolution (SLE) and its variant SLE($kappa,rho_c$). After exploring the derivation and the properties of the Langevin equation of the tip of the SLE trace, we o
We derive the generalized Fokker-Planck equation associated with the Langevin equation (in the Ito sense) for an overdamped particle in an external potential driven by multiplicative noise with an arbitrary distribution of the increments of the noise
Microscopic theory of Brownian motion of a particle of mass $M$ in a bath of molecules of mass $mll M$ is considered beyond lowest order in the mass ratio $m/M$. The corresponding Langevin equation contains nonlinear corrections to the dissipative fo