ﻻ يوجد ملخص باللغة العربية
Fractional derivative in time variable is introduced into the Fokker-Planck equation of a population growth model. Its solution, the KNO scaling function, is transformed into the generating function for the multiplicity distribution. Formulas of the factorial moment and the $H_j$ moment are derived from the generating function, which reduces to that of the negative binomial distribution (NBD), if the fractional derivative is replaced to the ordinary one. In our approach, oscillation of $H_j$ moment appears contrary to the case of the NBD. Calculated $H_j$ moments are compared with those given from the data in $pbar{p}$ collisions and in $e^+e^-$ collisions.
The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation. From its solution (the pr
We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavy-tailed increments, and the transition probability density of the noise gener
We consider a continuous random walk model for describing normal as well as anomalous diffusion of particles subjected to an external force when these particles diffuse in a uniformly expanding (or contracting) medium. A general equation that relates
We consider the $d=1$ nonlinear Fokker-Planck-like equation with fractional derivatives $frac{partial}{partial t}P(x,t)=D frac{partial^{gamma}}{partial x^{gamma}}[P(x,t) ]^{ u}$. Exact time-dependent solutions are found for $ u = frac{2-gamma}{1+ ga
In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using t