ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping

125   0   0.0 ( 0 )
 نشر من قبل Joseph Horvat
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S.X. Dou




اسأل ChatGPT حول البحث

Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-element doping, decreasing Tc by only 1.5K, introducing pinning centres effective at high fields and temperatures and enhancing Jc and Hirr significantly. Compared to the non-doped sample, Jc for the 10wt% doped sample increased by a factor of 32 at 5K and 8T, 42 at 20K and 5T, and 14 at 30K and 2T. At 20K, which is considered to be a benchmark operating temperature for MgB2, the best Jc for the doped sample was 2.4x10^5A/cm2 at 2T, which is comparable to Jc of the best Ag/Bi-2223 tapes. At 20K and 4T, Jc was 36,000A/cm2, which was twice as high as for the best MgB2 thin films and an order of magnitude higher than for the best Fe/MgB2 tapes. Because of such high performance, it is anticipated that the future MgB2 conductors will be made using the formula of MgBxSiyCz instead of the pure MgB2.



قيم البحث

اقرأ أيضاً

67 - S. X. Dou , A. V. Pan , S. Zhou 2002
We investigated the effect of SiC nano-particle doping on the crystal lattice structure, critical temperature T_c, critical current density J_c, and flux pinning in MgB_2 superconductor. A series of MgB_{2-x}(SiC)_{x/2} samples with x = 0 to 1.0 were fabricated using in-situ reaction process. The contraction of the lattice and depression of T_c with increasing SiC doping level remained rather small due to the counter-balanced effect of Si and C co-doping. The high level Si and C co-doping allowed the creation of intra-grain defects and highly dispersed nano-inclusions within the grains which can act as effective pinning centers for vortices, improving J_c behavior as a function of the applied magnetic field. The enhanced pinning is mainly attributable to the substitution-induced defects and a local structure fluctuations within grains. A pinning mechanism is proposed to account for different contributions of different defects in MgB_{2-x}(SiC)_{x/2} superconductors.
Superconducting MgB2 strands with nanometer-scale SiC additions have been investigated systematically using transport and magnetic measurements. A comparative study of MgB2 strands with different nano-SiC addition levels has shown C-doping-enhanced c ritical current density Jc through enhancements in the upper critical field, Hc2, and decreased anisotropy. The critical current density and flux pinning force density obtained from magnetic measurements were found to greatly differ from the values obtained through transport measurements, particularly with regards to magnetic field dependence. The differences in magnetic and transport results are largely attributed to connectivity related effects. On the other hand, based on the scaling behavior of flux pinning force, there may be other effective pinning centers in MgB2 strands in addition to grain boundary pinning.
129 - Y. Ding , Y. Sun , J. C. Zhuang 2011
A series of polycrystalline SmFeAs1-xOx bulks was prepared to systematically investigate the influence of sample density on flux pinning properties. Different sample densities were achieved by controlling the pelletizing pressure. The superconducting volume fraction, the critical current densities Jcm and the flux pinning force densities Fp were estimated from the magnetization measurements. Experimental results manifest that: (1) the superconducting volume fraction decreases with the decreasing of sample density. (2) The Jcm values have the similar trend except for the sample with very high density may due to different connectivity and pinning mechanism. Moreover, The Jcm(B) curve develops a peak effect at approximately the same field at which the high-density sample shows a kink. (3) The Fp(B) curve of the high-density sample shows a low-field peak and a high-field peak at several temperatures, which can be explained by improved intergranular current, while only one peak can be observed in Fp(B) of the low-density samples. Based on the scaling behaviour of flux pinning force densities, the main intragranular pinning is normal point pinning.
A comparative study of pure, SiC, and C doped MgB2 wires has revealed that the SiC doping allowed C substitution and MgB2 formation to take place simultaneously at low temperatures. C substitution enhances Hc2, while the defects, small grain size and nanoinclusions induced by C incorporation and low temperature processing are responsible for the improvement in Jc. The irreversibility field (Hirr) for the SiC doped sample reached the benchmarking value of 10 T at 20 K, exceeding that of NbTi at 4.2 K. This dual reaction model also enables us to predict desirable dopants for enhancing the performance properties of MgB2.
Polycrystalline MgB2-xCx samples with x=0.05, 0.1, 0.2, 0.3, 0.4 nano-particle carbon powder were prepared using an in-situ reaction method under well controlled conditions to limit the extent of C substitution. The phases, lattice parameters, micros tructures, superconductivity and flux pinning were characterized by XRD, TEM, and magnetic measurements. It was found that both the a-axis lattice parameter and the Tc decreased monotonically with increasing doping level. For the sample doped with the highest nominal composition of x=0.4 the Tc dropped only 2.7K. The nano-C-doped samples showed an improved field dependence of the Jc compared with the undoped sample over a wide temperature range. The enhancement by C-doping is similar to that of Si-doping but not as strong as for nano-SiC doped MgB2. X-ray diffraction results indicate that C reacted with Mg to form nano-size Mg2C3 and MgB2C2 particles. Nano-particle inclusions and substitution, both observed by transmission electron microscopy, are proposed to be responsible for the enhancement of flux pinning in high fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا