ﻻ يوجد ملخص باللغة العربية
We have measured the ratio, r = $sigma_S/sigma_T$ of the formation cross section, $sigma$ of singlet ($sigma_S$) and triplet ($sigma_T$) excitons from oppositely charged polarons in a large variety of $pi$-conjugated oligomer and polymer films, using the photoinduced absorption and optically detected magnetic resonance spectroscopies. The ratio r is directly related to the singlet exciton yield, which in turn determines the maximum electroluminescence quantum efficiency in organic light emitting diodes (OLED). We discovered that r increases with the conjugation length, CL; in fact a universal dependence exists in which $r^{-1}$ depends linearly on $CL^{-1}$, irrespective of the chain backbone structure. These results indicate that $pi$-conjugated polymers have a clear advantage over small molecules in OLED applications.
The maximum efficiency in organic light-emitting diodes (OLEDs) depends on the ratio, $r=k_S/k_T$, where $k_S$ ($k_T$) is the singlet (triplet) exciton formation rate. Several recent experiments found that r increases with increasing oligomer length
Many optoelectronic devices based on organic materials require rapid and long-range singlet exciton transport. Key factors that control the transport of singlet excitons includes the electronic structure of the material, disorder and exciton-phonon c
Intimately connected to the rule of life, chirality remains a long-time fascination in biology, chemistry, physics and materials science. Chiral structures, e.g., nucleic acid and cholesteric phase developed from chiral molecules are common in nature
Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon A$_g$ states in these systems to which photoi
Conjugated polymers offer potential for many diverse applications but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations - excitons - span only a few nanometres of a molecule, which itself