ﻻ يوجد ملخص باللغة العربية
Conjugated polymers offer potential for many diverse applications but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations - excitons - span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not fully understood. For example, where is the exciton formed within a conjugated segment, is it always situated on the same repeat units? Here, we introduce structurally-rigid molecular spoked wheels, 6 nanometres in diameter, as a model of extended pi-conjugation. Single-molecule fluorescence reveals random exciton localisation, leading to temporally-varying emission polarisation. Initially, this random localisation arises after every photon absorption event because of temperature independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales following prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, however, emission polarisation can also switch without a spectral jump occurring, implying long-range homogeneity in local dielectric environment.
We discuss the intriguing photophysics of a giant molecular spoked wheel of pi-conjugated arylenealkynylene chromophores on the single-molecule level. This molecular mesoscopic tructure, C1878H2682, shows fast switching between the 12 identical chrom
Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent,
New charge transfer crystals of $pi$-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure is reported for charge t
The exciton relaxation dynamics of photoexcited electronic states in poly($p$-phenylenevinylene) (PPV) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanic
We have measured the ratio, r = $sigma_S/sigma_T$ of the formation cross section, $sigma$ of singlet ($sigma_S$) and triplet ($sigma_T$) excitons from oppositely charged polarons in a large variety of $pi$-conjugated oligomer and polymer films, using