ﻻ يوجد ملخص باللغة العربية
Many optoelectronic devices based on organic materials require rapid and long-range singlet exciton transport. Key factors that control the transport of singlet excitons includes the electronic structure of the material, disorder and exciton-phonon coupling. An important parameter whose influence on exciton transport has not been explored is the symmetry of the singlet electronic state (S1). Here, we employ femtosecond transient absorption spectroscopy and microscopy to reveal the relationship between the symmetry of S1 and exciton transport in highly aligned, near-disorder free, one-dimensional conjugated polymers based on polydiacetylene.
Organic semiconductors have the remarkable property that their optical excitation not only generates charge-neutral electron-hole pairs (excitons) but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this cha
We consider dynamics of excitons in branched conducting polymers. An effective model based on the use of quantum graph concept is applied for computing of exciton migration along the branched polymer chain Condition for the regime, when the transmiss
We present a Monte Carlo study of the finite temperature properties of an extended Hubbard-Peierls model describing one dimensional $pi$-conjugated polymers. The model incorporates electron-phonon and hyperfine interaction and it is solved at the mea
We present a theory for spin-polarized transport through a generic organic polymer connected to ferromagnetic leads with arbitrary angle theta between their magnetization directions, taking into account the polaron and bipolaron states as effective c
Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilaye