ﻻ يوجد ملخص باللغة العربية
Within a rigid-band correlated electron model for oligomers of poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that there exist two fundamentally different classes of two-photon A$_g$ states in these systems to which photoinduced absorption (PA) can occur. At relatively lower energies there occur A$_g$ states which are superpositions of one electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations, that are both comprised of the highest delocalized valence band and the lowest delocalized conduction band states only. The dominant PA is to one specific member of this class of states (the mA$_g$). In addition to the above class of A$_g$ states, PA can also occur to a higher energy kA$_g$ state whose 2e--2h component is {em different} and has significant contributions from excitations involving both delocalized and localized bands. Our calculated scaled energies of the mA$_g$ and the kA$_g$ agree reasonably well to the experimentally observed low and high energy PAs in PPV. The calculated relative intensities of the two PAs are also in qualitative agreement with experiment. In the case of ladder-type PPP and its oligomers, we predict from our theoretical work a new intense PA at an energy considerably lower than the region where PA have been observed currently. Based on earlier work that showed that efficient charge--carrier generation occurs upon excitation to odd--parity states that involve both delocalized and localized bands, we speculate that it is the characteristic electronic nature of the kA$_g$ that leads to charge generation subsequent to excitation to this state, as found experimentally.
We have measured the ratio, r = $sigma_S/sigma_T$ of the formation cross section, $sigma$ of singlet ($sigma_S$) and triplet ($sigma_T$) excitons from oppositely charged polarons in a large variety of $pi$-conjugated oligomer and polymer films, using
The exciton relaxation dynamics of photoexcited electronic states in poly($p$-phenylenevinylene) (PPV) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanic
Optical absorption spectra of poly(thiophene vinylene) (PTV) conjugated polymers have been studied at room temperature in the spectral range of 450 to 800 nm. A dominant peak located at 577 nm and a prominent shoulder at 619 nm are observed. Another
The nature of the primary photoexcitations in semiconducting single-walled carbon nanotubes (S-SWCNTs) is of strong current interest. We have studied the emission spectra of S-SWCNTs and two different $pi$-conjugated polymers in solutions and films,
A density matrix renormalisation group scheme is developed, allowing for the first time essentially exact numerical solutions for the important excited states of a realistic semi-empirical model for oligo-phenylenes. By monitoring the evolution of th