ﻻ يوجد ملخص باللغة العربية
In this work we introduce a concept of complexity for undirected graphs in terms of the spectral analysis of the Laplacian operator defined by the incidence matrix of the graph. Precisely, we compute the norm of the vector of eigenvalues of both the graph and its complement and take their product. Doing so, we obtain a quantity that satisfies two basic properties that are the expected for a measure of complexity. First,complexity of fully connected and fully disconnected graphs vanish. Second, complexity of complementary graphs coincide. This notion of complexity allows us to distinguish different kinds of graphs by placing them in a croissant-shaped region of the plane link density - complexity, highlighting some features like connectivity,concentration, uniformity or regularity and existence of clique-like clusters. Indeed, considering graphs with a fixed number of nodes, by plotting the link density versus the complexity we find that graphs generated by different methods take place at different regions of the plane. We consider some generated graphs, in particular the Erdos-Renyi, the Watts-Strogatz and the Barabasi-Albert models. Also, we place some particular, let us say deterministic, to wit, lattices, stars, hyper-concentrated and cliques-containing graphs. It is worthy noticing that these deterministic classical models of graphs depict the boundary of the croissant-shaped region. Finally, as an application to graphs generated by real measurements, we consider the brain connectivity graphs from two epileptic patients obtained from magnetoencephalography (MEG) recording, both in a baseline period and in ictal periods .In this case, our definition of complexity could be used as a tool for discerning between states, by the analysis of differences at distinct frequencies of the MEG recording.
Based on the notion of maximal correlation, Kimeldorf, May and Sampson (1980) introduce a measure of correlation between two random variables, called the concordant monotone correlation (CMC). We revisit, generalize and prove new properties of this m
Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control p
Private information retrieval has been reformulated in an information-theoretic perspective in recent years. The two most important parameters considered for a PIR scheme in a distributed storage system are the storage overhead and PIR rate. The comp
In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this pu
The performance of mobile edge computing (MEC) depends critically on the quality of the wireless channels. From this viewpoint, the recently advocated intelligent reflecting surface (IRS) technique that can proactively reconfigure wireless channels i