ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Monotone Measure of Correlation

65   0   0.0 ( 0 )
 نشر من قبل Omid Etesami
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the notion of maximal correlation, Kimeldorf, May and Sampson (1980) introduce a measure of correlation between two random variables, called the concordant monotone correlation (CMC). We revisit, generalize and prove new properties of this measure of correlation. It is shown that CMC captures various types of correlation detected in measures of rank correlation like the Kendall tau correlation. We show that the CMC satisfies the data processing and tensorization properties (that make ordinary maximal correlation applicable to problems in information theory). Furthermore, CMC is shown to be intimately related to the FKG inequality. Furthermore, a combinatorical application of CMC is given for which we do not know of another method to derive its result. Finally, we study the problem of the complexity of the computation of the CMC, which is a non-convex optimization problem with local maximas. We give a simple but exponential-time algorithm that is guaranteed to output the exact value of the generalized CMC.



قيم البحث

اقرأ أيضاً

In this work we introduce a concept of complexity for undirected graphs in terms of the spectral analysis of the Laplacian operator defined by the incidence matrix of the graph. Precisely, we compute the norm of the vector of eigenvalues of both the graph and its complement and take their product. Doing so, we obtain a quantity that satisfies two basic properties that are the expected for a measure of complexity. First,complexity of fully connected and fully disconnected graphs vanish. Second, complexity of complementary graphs coincide. This notion of complexity allows us to distinguish different kinds of graphs by placing them in a croissant-shaped region of the plane link density - complexity, highlighting some features like connectivity,concentration, uniformity or regularity and existence of clique-like clusters. Indeed, considering graphs with a fixed number of nodes, by plotting the link density versus the complexity we find that graphs generated by different methods take place at different regions of the plane. We consider some generated graphs, in particular the Erdos-Renyi, the Watts-Strogatz and the Barabasi-Albert models. Also, we place some particular, let us say deterministic, to wit, lattices, stars, hyper-concentrated and cliques-containing graphs. It is worthy noticing that these deterministic classical models of graphs depict the boundary of the croissant-shaped region. Finally, as an application to graphs generated by real measurements, we consider the brain connectivity graphs from two epileptic patients obtained from magnetoencephalography (MEG) recording, both in a baseline period and in ictal periods .In this case, our definition of complexity could be used as a tool for discerning between states, by the analysis of differences at distinct frequencies of the MEG recording.
In this paper, let $n=2m$ and $d=3^{m+1}-2$ with $mgeq2$ and $gcd(d,3^n-1)=1$. By studying the weight distribution of the ternary Zetterberg code and counting the numbers of solutions of some equations over the finite field $mathbb{F}_{3^n}$, the cor relation distribution between a ternary $m$-sequence of period $3^n-1$ and its $d$-decimation sequence is completely determined. This is the first time that the correlation distribution for a non-binary Niho decimation has been determined since 1976.
167 - Elad Domanovitz , Uri Erez 2019
The maximal correlation coefficient is a well-established generalization of the Pearson correlation coefficient for measuring non-linear dependence between random variables. It is appealing from a theoretical standpoint, satisfying Renyis axioms for a measure of dependence. It is also attractive from a computational point of view due to the celebrated alternating conditional expectation algorithm, allowing to compute its empirical version directly from observed data. Nevertheless, from the outset, it was recognized that the maximal correlation coefficient suffers from some fundamental deficiencies, limiting its usefulness as an indicator of estimation quality. Another well-known measure of dependence is the correlation ratio which also suffers from some drawbacks. Specifically, the maximal correlation coefficient equals one too easily whereas the correlation ratio equals zero too easily. The present work recounts some attempts that have been made in the past to alter the definition of the maximal correlation coefficient in order to overcome its weaknesses and then proceeds to suggest a natural variant of the maximal correlation coefficient as well as a modified conditional expectation algorithm to compute it. The proposed dependence measure at the same time resolves the major weakness of the correlation ratio measure and may be viewed as a bridge between these two classical measures.
119 - Nihat Ay , Wolfgang Lohr 2016
We consider a general model of the sensorimotor loop of an agent interacting with the world. This formalises Uexkulls notion of a emph{function-circle}. Here, we assume a particular causal structure, mechanistically described in terms of Markov kerne ls. In this generality, we define two $sigma$-algebras of events in the world that describe two respective perspectives: (1) the perspective of an external observer, (2) the intrinsic perspective of the agent. Not all aspects of the world, seen from the external perspective, are accessible to the agent. This is expressed by the fact that the second $sigma$-algebra is a subalgebra of the first one. We propose the smaller one as formalisation of Uexkulls emph{Umwelt} concept. We show that, under continuity and compactness assumptions, the global dynamics of the world can be simplified without changing the internal process. This simplification can serve as a minimal world model that the system must have in order to be consistent with the internal process.
92 - Ran Hadad , Uri Erez , 2017
An inequality is derived for the correlation of two univariate functions operating on symmetric bivariate normal random variables. The inequality is a simple consequence of the Cauchy-Schwarz inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا