ﻻ يوجد ملخص باللغة العربية
Based on the notion of maximal correlation, Kimeldorf, May and Sampson (1980) introduce a measure of correlation between two random variables, called the concordant monotone correlation (CMC). We revisit, generalize and prove new properties of this measure of correlation. It is shown that CMC captures various types of correlation detected in measures of rank correlation like the Kendall tau correlation. We show that the CMC satisfies the data processing and tensorization properties (that make ordinary maximal correlation applicable to problems in information theory). Furthermore, CMC is shown to be intimately related to the FKG inequality. Furthermore, a combinatorical application of CMC is given for which we do not know of another method to derive its result. Finally, we study the problem of the complexity of the computation of the CMC, which is a non-convex optimization problem with local maximas. We give a simple but exponential-time algorithm that is guaranteed to output the exact value of the generalized CMC.
In this work we introduce a concept of complexity for undirected graphs in terms of the spectral analysis of the Laplacian operator defined by the incidence matrix of the graph. Precisely, we compute the norm of the vector of eigenvalues of both the
In this paper, let $n=2m$ and $d=3^{m+1}-2$ with $mgeq2$ and $gcd(d,3^n-1)=1$. By studying the weight distribution of the ternary Zetterberg code and counting the numbers of solutions of some equations over the finite field $mathbb{F}_{3^n}$, the cor
The maximal correlation coefficient is a well-established generalization of the Pearson correlation coefficient for measuring non-linear dependence between random variables. It is appealing from a theoretical standpoint, satisfying Renyis axioms for
We consider a general model of the sensorimotor loop of an agent interacting with the world. This formalises Uexkulls notion of a emph{function-circle}. Here, we assume a particular causal structure, mechanistically described in terms of Markov kerne
An inequality is derived for the correlation of two univariate functions operating on symmetric bivariate normal random variables. The inequality is a simple consequence of the Cauchy-Schwarz inequality.