ﻻ يوجد ملخص باللغة العربية
The performance of mobile edge computing (MEC) depends critically on the quality of the wireless channels. From this viewpoint, the recently advocated intelligent reflecting surface (IRS) technique that can proactively reconfigure wireless channels is anticipated to bring unprecedented performance gain to MEC. In this paper, the problem of network throughput optimization of an IRS-assisted multi-hop MEC network is investigated, in which the phase-shifts of the IRS and the resource allocation of the relays need to be jointly optimized. However, due to the coupling among the transmission links of different hops caused by the utilization of the IRS and the complicated multi-hop network topology, it is difficult to solve the considered problem by directly applying existing optimization techniques. Fortunately, by exploiting the underlying structure of the network topology and spectral graph theory, it is shown that the network throughput can be well approximated by the second smallest eigenvalue of the network Laplacian matrix. This key finding allows us to develop an effective iterative algorithm for solving the considered problem. Numerical simulations are performed to corroborate the effectiveness of the proposed scheme.
We investigate the joint uplink-downlink design for time-division-duplexing (TDD) and frequency-division-duplexing (FDD) multi-user systems aided by an intelligent reflecting surface (IRS). We formulate and solve a multi-objective optimization proble
In this article, we consider the problem of relay assisted computation offloading (RACO), in which user A aims to share the results of computational tasks with another user B through wireless exchange over a relay platform equipped with mobile edge c
In this letter, we study the resource allocation for a multiuser intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) system. Specifically, a multi-antenna base station (BS) transmits energy and info
Resource allocation is considered for cooperative transmissions in multiple-relay wireless networks. Two auction mechanisms, SNR auctions and power auctions, are proposed to distributively coordinate the allocation of power among multiple relays. In
It is known that the capacity of the intelligent reflecting surface (IRS) aided cellular network can be effectively improved by reflecting the incident signals from the transmitter in a low-cost passive reflecting way. Nevertheless, in the actual net