ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Fourier Transform based on Directed Laplacian

71   0   0.0 ( 0 )
 نشر من قبل Rahul Singh
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this purpose, we propose a shift operator based on the directed Laplacian of a graph. Based on our shift operator, we then define total variation of graph signals, which is used in frequency ordering. We achieve natural frequency ordering and interpretation via the proposed definition of GFT. Moreover, we show that our proposed shift operator makes the LSI filters under DSP$_mathrm{G}$ to become polynomial in the directed Laplacian.



قيم البحث

اقرأ أيضاً

Objective: Longitudinal neuroimaging studies have demonstrated that adolescence is the crucial developmental epoch of continued brain growth and change. A large number of researchers dedicate to uncovering the mechanisms about brain maturity during a dolescence. Motivated by both achievement in graph signal processing and recent evidence that some brain areas act as hubs connecting functionally specialized systems, we proposed an approach to detect these regions from spectral analysis perspective. In particular, as human brain undergoes substantial development throughout adolescence, we addressed the challenge by evaluating the functional network difference among age groups from functional magnetic resonance imaging (fMRI) observations. Methods: We treated these observations as graph signals defined on the parcellated functional brain regions and applied graph Laplacian learning based Fourier Transform (GLFT) to transform the original graph signals into frequency domain. Eigen-analysis was conducted afterwards to study the behavior of the corresponding brain regions, which enables the characterization of brain maturation. Result: We first evaluated our method on the synthetic data and further applied the method to resting and task state fMRI imaging data from Philadelphia Neurodevelopmental Cohort (PNC) dataset, comprised of normally developing adolescents from 8 to 22. The model provided a highest accuracy of 95.69% in distinguishing different adolescence stages. Conclusion: We detected 13 hubs from resting state fMRI and 16 hubs from task state fMRI that are highly related to brain maturation process. Significance: The proposed GLFT method is powerful in extracting the brain connectivity patterns and identifying hub regions with a high prediction power
The frequent exchange of multimedia information in the present era projects an increasing demand for copyright protection. In this work, we propose a novel audio zero-watermarking technology based on graph Fourier transform for enhancing the robustne ss with respect to copyright protection. In this approach, the combined shift operator is used to construct the graph signal, upon which the graph Fourier analysis is performed. The selected maximum absolute graph Fourier coefficients representing the characteristics of the audio segment are then encoded into a feature binary sequence using K-means algorithm. Finally, the resultant feature binary sequence is XOR-ed with the watermark binary sequence to realize the embedding of the zero-watermarking. The experimental studies show that the proposed approach performs more effectively in resisting common or synchronization attacks than the existing state-of-the-art methods.
Fourier Transform Interferometry (FTI) is an appealing Hyperspectral (HS) imaging modality for many applications demanding high spectral resolution, e.g., in fluorescence microscopy. However, the effective resolution of FTI is limited by the durabili ty of biological elements when exposed to illuminating light. Overexposed elements are subject to photo-bleaching and become unable to fluoresce. In this context, the acquisition of biological HS volumes based on sampling the Optical Path Difference (OPD) axis at Nyquist rate leads to unpleasant trade-offs between spectral resolution, quality of the HS volume, and light exposure intensity. We propose two variants of the FTI imager, i.e., Coded Illumination-FTI (CI-FTI) and Structured Illumination FTI (SI-FTI), based on the theory of compressive sensing (CS). These schemes efficiently modulate light exposure temporally (in CI-FTI) or spatiotemporally (in SI-FTI). Leveraging a variable density sampling strategy recently introduced in CS, we provide near-optimal illumination strategies, so that the light exposure imposed on a biological specimen is minimized while the spectral resolution is preserved. Our analysis focuses on two criteria: (i) a trade-off between exposure intensity and the quality of the reconstructed HS volume for a given spectral resolution; (ii) maximizing HS volume quality for a fixed spectral resolution and constrained exposure budget. Our contributions can be adapted to an FTI imager without hardware modifications. The reconstruction of HS volumes from CS-FTI measurements relies on an $l_1$-norm minimization problem promoting a spatiospectral sparsity prior. Numerically, we support the proposed methods on synthetic data and simulated CS measurements (from actual FTI measurements) under various scenarios. In particular, the biological HS volumes can be reconstructed with a three-to-ten-fold reduction in the light exposure.
169 - Shamgar Gurevich 2008
The discrete Fourier transform (DFT) is an important operator which acts on the Hilbert space of complex valued functions on the ring Z/NZ. In the case where N=p is an odd prime number, we exhibit a canonical basis of eigenvectors for the DFT. The tr ansition matrix from the standard basis to the canonical basis defines a novel transform which we call the discrete oscillator transform (DOT for short). Finally, we describe a fast algorithm for computing the discrete oscillator transform in certain cases.
In this paper, a discrete LCT (DLCT) irrelevant to the sampling periods and without oversampling operation is developed. This DLCT is based on the well-known CM-CC-CM decomposition, that is, implemented by two discrete chirp multiplications (CMs) and one discrete chirp convolution (CC). This decomposition doesnt use any scaling operation which will change the sampling period or cause the interpolation error. Compared with previous works, DLCT calculated by direct summation and DLCT based on center discrete dilated Hermite functions (CDDHFs), the proposed method implemented by FFTs has much lower computational complexity. The relation between the proposed DLCT and the continuous LCT is also derived to approximate the samples of the continuous LCT. Simulation results show that the proposed method somewhat outperforms the CDDHFs-based method in the approximation accuracy. Besides, the proposed method has approximate additivity property with error as small as the CDDHFs-based method. Most importantly, the proposed method has perfect reversibility, which doesnt hold in many existing DLCTs. With this property, it is unnecessary to develop the inverse DLCT additionally because it can be replaced by the forward DLCT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا