ﻻ يوجد ملخص باللغة العربية
Deep learning-based single image deraining (SID) with unpaired information is of immense importance, as relying on paired synthetic data often limits their generality and scalability in real-world applications. However, we noticed that direct employ of unpaired adversarial learning and cycle-consistency constraints in the SID task is insufficient to learn the underlying relationship from rainy input to clean outputs, since the domain knowledge between rainy and rain-free images is asymmetrical. To address such limitation, we develop an effective unpaired SID method which explores mutual properties of the unpaired exemplars by a contrastive learning manner in a GAN framework, named as CDR-GAN. The proposed method mainly consists of two cooperative branches: Bidirectional Translation Branch (BTB) and Contrastive Guidance Branch (CGB). Specifically, BTB takes full advantage of the circulatory architecture of adversarial consistency to exploit latent feature distributions and guide transfer ability between two domains by equipping it with bidirectional mapping. Simultaneously, CGB implicitly constrains the embeddings of different exemplars in rain space by encouraging the similar feature distributions closer while pushing the dissimilar further away, in order to better help rain removal and image restoration. During training, we explore several loss functions to further constrain the proposed CDR-GAN. Extensive experiments show that our method performs favorably against existing unpaired deraining approaches on both synthetic and real-world datasets, even outperforms several fully-supervised or semi-supervised models.
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, usin
As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a nov
Single image dehazing is a challenging ill-posed problem due to the severe information degeneration. However, existing deep learning based dehazing methods only adopt clear images as positive samples to guide the training of dehazing network while ne
Contrastive learning shows great potential in unpaired image-to-image translation, but sometimes the translated results are in poor quality and the contents are not preserved consistently. In this paper, we uncover that the negative examples play a c
While deep learning (DL)-based video deraining methods have achieved significant success recently, they still exist two major drawbacks. Firstly, most of them do not sufficiently model the characteristics of rain layers of rainy videos. In fact, the