ترغب بنشر مسار تعليمي؟ اضغط هنا

RCDNet: An Interpretable Rain Convolutional Dictionary Network for Single Image Deraining

490   0   0.0 ( 0 )
 نشر من قبل Hong Wang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a novel deep architecture, called rain convolutional dictionary network (RCDNet), which embeds the intrinsic priors of rain streaks and has clear interpretability. In specific, we first establish a RCD model for representing rain streaks and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. By unfolding it, we then build the RCDNet in which every network module has clear physical meanings and corresponds to each operation involved in the algorithm. This good interpretability greatly facilitates an easy visualization and analysis on what happens inside the network and why it works well in inference process. Moreover, taking into account the domain gap issue in real scenarios, we further design a novel dynamic RCDNet, where the rain kernels can be dynamically inferred corresponding to input rainy images and then help shrink the space for rain layer estimation with few rain maps so as to ensure a fine generalization performance in the inconsistent scenarios of rain types between training and testing data. By end-to-end training such an interpretable network, all involved rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to better deraining performance. Comprehensive experiments substantiate the superiority of our method, especially on its well generality to diverse testing scenarios and good interpretability for all its modules. Code is available in emph{url{https://github.com/hongwang01/DRCDNet}}.



قيم البحث

اقرأ أيضاً

162 - Xiang Chen , Yufeng Huang , Lei Xu 2021
Rain streaks bring serious blurring and visual quality degradation, which often vary in size, direction and density. Current CNN-based methods achieve encouraging performance, while are limited to depict rain characteristics and recover image details in the poor visibility environment. To address these issues, we present a Multi-scale Hourglass Hierarchical Fusion Network (MH2F-Net) in end-to-end manner, to exactly captures rain streak features with multi-scale extraction, hierarchical distillation and information aggregation. For better extracting the features, a novel Multi-scale Hourglass Extraction Block (MHEB) is proposed to get local and global features across different scales through down- and up-sample process. Besides, a Hierarchical Attentive Distillation Block (HADB) then employs the dual attention feature responses to adaptively recalibrate the hierarchical features and eliminate the redundant ones. Further, we introduce a Residual Projected Feature Fusion (RPFF) strategy to progressively discriminate feature learning and aggregate different features instead of directly concatenating or adding. Extensive experiments on both synthetic and real rainy datasets demonstrate the effectiveness of the designed MH2F-Net by comparing with recent state-of-the-art deraining algorithms. Our source code will be available on the GitHub: https://github.com/cxtalk/MH2F-Net.
Perception plays an important role in reliable decision-making for autonomous vehicles. Over the last ten years, huge advances have been made in the field of perception. However, perception in extreme weather conditions is still a difficult problem, especially in rainy weather conditions. In order to improve the detection effect of road targets in rainy environments, we analyze the physical characteristics of the rain layer and propose a deraining convolutional neural network structure. Based on this network structure, we design an ablation experiment and experiment results show that our method can effectively improve the accuracy of object detection in rainy conditions.
70 - Hong Wang , Qi Xie , Qian Zhao 2020
Deep learning (DL) methods have achieved state-of-the-art performance in the task of single image rain removal. Most of current DL architectures, however, are still lack of sufficient interpretability and not fully integrated with physical structures inside general rain streaks. To this issue, in this paper, we propose a model-driven deep neural network for the task, with fully interpretable network structures. Specifically, based on the convolutional dictionary learning mechanism for representing rain, we propose a novel single image deraining model and utilize the proximal gradient descent technique to design an iterative algorithm only containing simple operators for solving the model. Such a simple implementation scheme facilitates us to unfold it into a new deep network architecture, called rain convolutional dictionary network (RCDNet), with almost every network module one-to-one corresponding to each operation involved in the algorithm. By end-to-end training the proposed RCDNet, all the rain kernels and proximal operators can be automatically extracted, faithfully characterizing the features of both rain and clean background layers, and thus naturally lead to its better deraining performance, especially in real scenarios. Comprehensive experiments substantiate the superiority of the proposed network, especially its well generality to diverse testing scenarios and good interpretability for all its modules, as compared with state-of-the-arts both visually and quantitatively. The source codes are available at url{https://github.com/hongwang01/RCDNet}.
Image deraining is an important image processing task as rain streaks not only severely degrade the visual quality of images but also significantly affect the performance of high-level vision tasks. Traditional methods progressively remove rain strea ks via different recurrent neural networks. However, these methods fail to yield plausible rain-free images in an efficient manner. In this paper, we propose a residual squeeze-and-excitation network called RSEN for fast image deraining as well as superior deraining performance compared with state-of-the-art approaches. Specifically, RSEN adopts a lightweight encoder-decoder architecture to conduct rain removal in one stage. Besides, both encoder and decoder adopt a novel residual squeeze-and-excitation block as the core of feature extraction, which contains a residual block for producing hierarchical features, followed by a squeeze-and-excitation block for channel-wisely enhancing the resulted hierarchical features. Experimental results demonstrate that our method can not only considerably reduce the computational complexity but also significantly improve the deraining performance compared with state-of-the-art methods.
Removal of rain streaks from a single image is an extremely challenging problem since the rainy images often contain rain streaks of different size, shape, direction and density. Most recent methods for deraining use a deep network following a generi c encoder-decoder architecture which captures low-level features across the initial layers and high-level features in the deeper layers. For the task of deraining, the rain streaks which are to be removed are relatively small and focusing much on global features is not an efficient way to solve the problem. To this end, we propose using an overcomplete convolutional network architecture which gives special attention in learning local structures by restraining the receptive field of filters. We combine it with U-Net so that it does not lose out on the global structures as well while focusing more on low-level features, to compute the derained image. The proposed network called, Over-and-Under Complete Deraining Network (OUCD), consists of two branches: overcomplete branch which is confined to small receptive field size in order to focus on the local structures and an undercomplete branch that has larger receptive fields to primarily focus on global structures. Extensive experiments on synthetic and real datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا