ترغب بنشر مسار تعليمي؟ اضغط هنا

Contrastive Learning for Unpaired Image-to-Image Translation

184   0   0.0 ( 0 )
 نشر من قبل Taesung Park
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, using a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each domain is only a single image.



قيم البحث

اقرأ أيضاً

An unsupervised image-to-image translation (UI2I) task deals with learning a mapping between two domains without paired images. While existing UI2I methods usually require numerous unpaired images from different domains for training, there are many s cenarios where training data is quite limited. In this paper, we argue that even if each domain contains a single image, UI2I can still be achieved. To this end, we propose TuiGAN, a generative model that is trained on only two unpaired images and amounts to one-shot unsupervised learning. With TuiGAN, an image is translated in a coarse-to-fine manner where the generated image is gradually refined from global structures to local details. We conduct extensive experiments to verify that our versatile method can outperform strong baselines on a wide variety of UI2I tasks. Moreover, TuiGAN is capable of achieving comparable performance with the state-of-the-art UI2I models trained with sufficient data.
Contrastive learning shows great potential in unpaired image-to-image translation, but sometimes the translated results are in poor quality and the contents are not preserved consistently. In this paper, we uncover that the negative examples play a c ritical role in the performance of contrastive learning for image translation. The negative examples in previous methods are randomly sampled from the patches of different positions in the source image, which are not effective to push the positive examples close to the query examples. To address this issue, we present instance-wise hard Negative Example Generation for Contrastive learning in Unpaired image-to-image Translation (NEGCUT). Specifically, we train a generator to produce negative examples online. The generator is novel from two perspectives: 1) it is instance-wise which means that the generated examples are based on the input image, and 2) it can generate hard negative examples since it is trained with an adversarial loss. With the generator, the performance of unpaired image-to-image translation is significantly improved. Experiments on three benchmark datasets demonstrate that the proposed NEGCUT framework achieves state-of-the-art performance compared to previous methods.
Unpaired Image-to-Image Translation (UIT) focuses on translating images among different domains by using unpaired data, which has received increasing research focus due to its practical usage. However, existing UIT schemes defect in the need of super vised training, as well as the lack of encoding domain information. In this paper, we propose an Attribute Guided UIT model termed AGUIT to tackle these two challenges. AGUIT considers multi-modal and multi-domain tasks of UIT jointly with a novel semi-supervised setting, which also merits in representation disentanglement and fine control of outputs. Especially, AGUIT benefits from two-fold: (1) It adopts a novel semi-supervised learning process by translating attributes of labeled data to unlabeled data, and then reconstructing the unlabeled data by a cycle consistency operation. (2) It decomposes image representation into domain-invariant content code and domain-specific style code. The redesigned style code embeds image style into two variables drawn from standard Gaussian distribution and the distribution of domain label, which facilitates the fine control of translation due to the continuity of both variables. Finally, we introduce a new challenge, i.e., disentangled transfer, for UIT models, which adopts the disentangled representation to translate data less related with the training set. Extensive experiments demonstrate the capacity of AGUIT over existing state-of-the-art models.
167 - Yihao Zhao , Ruihai Wu , Hao Dong 2020
Unpaired image-to-image translation is a class of vision problems whose goal is to find the mapping between different image domains using unpaired training data. Cycle-consistency loss is a widely used constraint for such problems. However, due to th e strict pixel-level constraint, it cannot perform geometric changes, remove large objects, or ignore irrelevant texture. In this paper, we propose a novel adversarial-consistency loss for image-to-image translation. This loss does not require the translated image to be translated back to be a specific source image but can encourage the translated images to retain important features of the source images and overcome the drawbacks of cycle-consistency loss noted above. Our method achieves state-of-the-art results on three challenging tasks: glasses removal, male-to-female translation, and selfie-to-anime translation.
There has been remarkable recent work in unpaired image-to-image translation. However, theyre restricted to translation on single pairs of distributions, with some exceptions. In this study, we extend one of these works to a scalable multidistributio n translation mechanism. Our translation models not only converts from one distribution to another but can be stacked to create composite translation functions. We show that this composite property makes it possible to generate images with characteristics not seen in the training set. We also propose a decoupled training mechanism to train multiple distributions separately, which we show, generates better samples than isolated joint training. Further, we do a qualitative and quantitative analysis to assess the plausibility of the samples. The code is made available at https://github.com/lgraesser/im2im2im.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا