ﻻ يوجد ملخص باللغة العربية
While deep learning (DL)-based video deraining methods have achieved significant success recently, they still exist two major drawbacks. Firstly, most of them do not sufficiently model the characteristics of rain layers of rainy videos. In fact, the rain layers exhibit strong physical properties (e.g., direction, scale and thickness) in spatial dimension and natural continuities in temporal dimension, and thus can be generally modelled by the spatial-temporal process in statistics. Secondly, current DL-based methods seriously depend on the labeled synthetic training data, whose rain types are always deviated from those in unlabeled real data. Such gap between synthetic and real data sets leads to poor performance when applying them in real scenarios. Against these issues, this paper proposes a new semi-supervised video deraining method, in which a dynamic rain generator is employed to fit the rain layer, expecting to better depict its insightful characteristics. Specifically, such dynamic generator consists of one emission model and one transition model to simultaneously encode the spatially physical structure and temporally continuous changes of rain streaks, respectively, which both are parameterized as deep neural networks (DNNs). Further more, different prior formats are designed for the labeled synthetic and unlabeled real data, so as to fully exploit the common knowledge underlying them. Last but not least, we also design a Monte Carlo EM algorithm to solve this model. Extensive experiments are conducted to verify the superiorities of the proposed semi-supervised deraining model.
Removing the rain streaks from single image is still a challenging task, since the shapes and directions of rain streaks in the synthetic datasets are very different from real images. Although supervised deep deraining networks have obtained impressi
Deep learning-based single image deraining (SID) with unpaired information is of immense importance, as relying on paired synthetic data often limits their generality and scalability in real-world applications. However, we noticed that direct employ
We present a multiview pseudo-labeling approach to video learning, a novel framework that uses complementary views in the form of appearance and motion information for semi-supervised learning in video. The complementary views help obtain more reliab
In this paper, we address several inadequacies of current video object segmentation pipelines. Firstly, a cyclic mechanism is incorporated to the standard semi-supervised process to produce more robust representations. By relying on the accurate refe
Breast lesion detection in ultrasound video is critical for computer-aided diagnosis. However, detecting lesion in video is quite challenging due to the blurred lesion boundary, high similarity to soft tissue and lack of video annotations. In this pa