ﻻ يوجد ملخص باللغة العربية
We develop a lower bound sieve for primes under the (unlikely) assumption of infinitely many exceptional characters. Compared with the illusory sieve due to Friedlander and Iwaniec which produces asymptotic formulas, we show that less arithmetic information is required to prove non-trivial lower bounds. As an application of our method, assuming the existence of infinitely many exceptional characters we show that there are infinitely many primes of the form $a^2+b^8$.
For a nonincreasing function $psi$, let $textrm{Exact}(psi)$ be the set of complex numbers that are approximable by complex rational numbers to order $psi$ but to no better order. In this paper, we obtain the Hausdorff dimension and packing dimension
We call an odd positive integer $n$ a $textit{Descartes number}$ if there exist positive integers $k,m$ such that $n = km$ and begin{equation} sigma(k)(m+1) = 2km end{equation} Currently, $mathcal{D} = 3^{2}7^{2}11^{2}13^{2}22021$ is the only kno
In this paper, we consider how to express an Iwahori--Whittaker function through Demazure characters. Under some interesting combinatorial conditions, we obtain an explicit formula and thereby a generalization of the Casselman--Shalika formula. Under
We prove an isomorphism between the finite domain from 1 up to the product of the first n primes and the new defined set of prime modular numbers. This definition provides some insights about relative prime numbers. We provide an inverse function fro
Generalizing the concept of a perfect number is a Zumkeller or integer perfect number that was introduced by Zumkeller in 2003. The positive integer $n$ is a Zumkeller number if its divisors can be partitioned into two sets with the same sum, which w