ﻻ يوجد ملخص باللغة العربية
We prove an isomorphism between the finite domain from 1 up to the product of the first n primes and the new defined set of prime modular numbers. This definition provides some insights about relative prime numbers. We provide an inverse function from the prime modular numbers into this finite domain. With this function we can calculate all numbers from 1 up to the product of the first n primes that are not divisible by the first n primes. This function provides a non sequential way for the calculation of prime numbers.
Natural numbers can be divided in two non-overlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blo
We present several formulae for the large $t$ asymptotics of the Riemann zeta function $zeta(s)$, $s=sigma+i t$, $0leq sigma leq 1$, $t>0$, which are valid to all orders. A particular case of these results coincides with the classical results of Sieg
We consider the summatory function of the number of prime factors for integers $leq x$ over arithmetic progressions. Numerical experiments suggest that some arithmetic progressions consist more number of prime factors than others. Greg Martin conject
We prove independence of normality to different bases We show that the set of real numbers that are normal to some base is Sigma^0_4 complete in the Borel hierarchy of subsets of real numbers. This was an open problem, initiated by Alexander Kechris, and conjectured by Ditzen 20 years ago.
We show that the largest prime factor of $n^2+1$ is infinitely often greater than $n^{1.279}$. This improves the result of de la Bret`eche and Drappeau (2019) who obtained this with $1.2182$ in place of $1.279.$ The main new ingredients in the proof